
mm18 manuscript JPEG Decompression in the Homomorphic
Encryption Domain

Xiaojing Ma
Service Computing Technology and System Lab,

Cluster and Grid Computing Lab,
School of Computer Science and Technology,

Huazhong University of Science and Technology
Wuhan, China

lindahust@hust.edu.cn

Changming Liu
Service Computing Technology and System Lab,

Cluster and Grid Computing Lab,
School of Computer Science and Technology,

Huazhong University of Science and Technology
Wuhan, China

webmaster@marysville-ohio.com

Ben Zhu∗
Microsoft Research Asia

Beijing, China
binzhu@microsoft.com

Sixing Cao
Service Computing Technology and System Lab,

Cluster and Grid Computing Lab,
School of Computer Science and Technology,

Huazhong University of Science and Technology
Wuhan, China

lleipuner@researchlabs.org

ABSTRACT
Privacy-preserving processing is desirable for cloud computing
to relieve users’ concern of loss of control of their uploaded data.
This may be fulfilled with homomorphic encryption. With widely
used JPEG, it is desirable to enable JPEG decompression in the
encryption domain. This is hard to achieve since JPEG decoding
needs to determine a matched codeword, which then determines
a codeword-dependent number of coefficients. With no access to
encrypted content, a decoder does not know which codeword is
matched, and thus cannot tell how many coefficients to extract, not
to mention to compute their values. In this paper, we propose a
novel scheme that enables JPEG decompression in the homomor-
phic encryption domain. The scheme applies a statically controlled
iterative procedure to decode one coefficient per iteration. In an
iteration, each codeword is compared with the bitstream to com-
pute an encrypted boolean that represents if the codeword is a
match or not. only one codeword’s boolean is an encrypted one.
Each codeword would produce an output coefficient and generate
a new bitstream by dropping consumed bits as if it were a match.
If a codeword is associated with more than one coefficient, the
codeword is replaced with another codeword representing the re-
maining undecoded coefficients for the next decoding iteration. The
summation of each codeword’s output multiplied by its matching
boolean is the output of the current iteration. This is equivalent
to selecting the output of the matched codeword. A side benefit
of our statically controlled decoding procedure is that paralleled

∗This author is the one corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MM’18, October 2018, Seoul, Korea
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Single-InstructionMultiple-Data (SIMD) is fully supported, wherein
multiple plaintexts are encrypted into a single plaintext, and decod-
ing a ciphertext block corresponds to decoding all corresponding
plaintext blocks. SIMD reduces the total size of ciphertexts of an
image. Experimental results are reported to show the performance
of our proposed scheme.

CCS CONCEPTS
• Security and privacy → Domain-specific security and pri-
vacy architectures;

KEYWORDS
Privacy-preserving decompression, Homomorphic encryption, JPEG
decoding.
ACM Reference Format:
Xiaojing Ma, Changming Liu, Ben Zhu, and Sixing Cao. 2018. mm18 man-
uscript JPEG Decompression in the Homomorphic Encryption Domain.
In Proceedings of ACM Multimedia (MM’18). ACM, Seoul, Korea, 9 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In the era of cloud computing, a growing amount of data is sent to
public clouds for storage and processing. Public clouds are typically
operated by third parties. Loss of control of the uploaded data is
a critical concern for many current and potential cloud users. To
address this issue, privacy-preserving cloud processing has been
actively studied in recent years. Among the proposed approaches,
Homomorphic Encryption (HE) is a promising approach. It allows
computation on ciphertexts, with the result, when decrypted, match-
ing the result of the operations on the plaintexts [14]. By processing
ciphertexts directly, a desired result is obtained while privacy is
fully preserved.

Many useful algorithms have already been enabled to execute
on ciphertexts of homomorphic encryption, such as some simple
statistical functions (e.g., sum, sum of squares, logistical regressions)

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MM’18, October 2018, Seoul, Korea B. Trovato et al.

[20], AES [15], linear transforms (e.g., discrete cosine transform [6],
discrete Fourier transform [5]), and bubble sort [2]. These enabled
algorithms require linear operations and a bounded number of
multiplications on ciphertexts. However, many more operations
and algorithms have yet be enabled on ciphertexts, such as division,
square roots, etc. Run-length encoding using fully homomorphic
encryption has been recently studied [9]. It concludes that running
run-length encoding (or any lossless compression algorithm) in the
homomorphic encryption domain would not compress (i.e., achieve
the worst-case compression ratio) unless some information is lost.

Decompression in the homomorphic encryption domain has yet
been studied. Studying decompression of some practical multimedia
compression in the homomorphic encryption domain is valuable
not only theoretically but also practically since, if enabled, it would
allow the following privacy-preserving cloud processing: Multime-
dia data is typically compressed in real world applications due to
a large amount of data. To protect privacy, compressed multime-
dia data should be encrypted before sending to a cloud. The cloud
should decompress the uploaded compressed data in the encryption
domain before applying other privacy-preserving operations on
the encrypted multimedia data.

It is a great challenge to enable decompression in the encryption
domain. A JPEG decoder, for example, compares a bitstream with
a Huffman table of variable-length codewords to find a matched
codeword, which in turn determines a codeword-dependent number
of Discrete Cosine Transform (DCT) coefficients and their values
and consumes a codeword-dependent number of coding bits. This
process is applied iteratively until 64 (or a desirable number of) DCT
coefficients of each block in an image have been determined. With
no access to any encrypted content, a JPEG decoder does not know
which codeword is actually matched, and thus cannot determine
how many DCT coefficients it should extract in an iteration, not
to mention to determine their values or to know when to stop
decoding for the current block and move to decoding for the next
block. Prior art offers no clue on how to address this challenge.

In this paper, we propose a novel scheme that enables JPEG
decompression in the encryption domain of leveled or fully ho-
momorphic encryption. We devise a statically controlled iterative
decoding procedure that decodes one coefficient per iteration us-
ing only sequential operations. Dynamically controlled operations
used in a conventional JPEG decoder are completely removed. In
one iteration, each codeword is compared with the bitstream to
compute an encrypted boolean that represents if the codeword is a
match or not. Among all the codewords in a Huffman table, there
is one and only one codeword that is a match, i.e., its boolean is
an encrypted one. Each codeword would process as if it were a
match, such as producing an output coefficient and generating a
new bitstream by dropping consumed coding bits for the next itera-
tion. If a codeword is associated with more than one coefficient, the
codeword is replaced with another codeword that represents the
remaining undecoded coefficients in generating a new bitstream
for the next decoding iteration. To fulfill this operation, additional
codewords may be added temporally to a Huffman table during
decoding. At the end of the iteration, we take summation of each
codeword’s output, such as its output coefficient or new bitstream,
multiplied by its matching boolean as the output of the iteration.

This summation is equivalent to selecting the output of the matched
codeword.

A side benefit of our statically controlled decoding scheme is that
paralleled decoding of Single-Instruction Multiple-Data (SIMD) is
fully supported: multiple, such as D = 256, plaintexts are encrypted
into a single ciphertext, and decoding one ciphertext block corre-
sponds to decoding simultaneously all the corresponding plaintext
blocks. This would also reduce the number of ciphertexts by D
times for an encrypted JPEG image.

Without loss of generality, we focus on the baseline JPEG in this
paper, wherein an image is of 8 bits per color components (i.e., 8-bit
images).

This paper is organized as follows: we first introduce homo-
morphic encryption and JPEG in Section 2, and then present our
Huffman decoding process in Section 3 and remaining JPEG de-
coding operations in Section 4. SIMD and encryption scheme are
described in Section 5. Implementation and experimental results
are reported in Section 6, and the paper concludes in Section 7.

2 BACKGROUND
2.1 Homomorphic Encryption
Partially homomorphic encryption supports homomorphic addi-
tions or multiplications, but not both. Paillier [21] supports only
homomorphic additions, i.e., linear operations. It has been widely
used in early privacy-preserving schemes [3–6, 10, 16, 19, 22, 26],
which would resort to multi-party computation (MPC) [12] for un-
supported non-linear operations. MPC requires involving the party
holding the private key during computation.

Fully Homomorphic Encryption (FHE) was first constructed by
Gentry [14] to support an arbitrary number of homomorphic addi-
tions and multiplications, but a costly procedure called bootstrap-
ping is needed. BGV [7] is a Leveled Homomorphic Encryption
(LHE) scheme that supports homomorphic additions and multi-
plications of polynomials with a bounded degree on Zn without
resorting to bootstrapping. On Z2, addition and multiplication are
equivalent to binary XOR and AND operations, respectively. This
paper focuses on enabling the JPEG decompression with homomor-
phic additions and multiplications of a polynomial with a bounded
degree on Z2.

With XOR and AND gates, an FHE computer can perform many
common operations on n-bit integers, such as addition, subtraction,
multiplication, sign change, left and right shift (with or without
sign extension), comparisons, and so on [13]. These operations can
be realized with polynomials of a bounded degree, and thus can
run with LHE. On the other hand, common operations and algo-
rithms, such as division of two real numbers, trigonometric and
exponential functions, comparison of two real numbers, cannot
be implemented in polynomials of a bounded degree. They can-
not run with LHE. They are either approximated with polynomial
algorithms or resorted to MPC when running with LHE.

Unlike a normal computer, the plaintext of an evaluation re-
sult remains inaccessible to an FHE computer. This subtle differ-
ence makes the FHE unable to execute any content-based oper-
ations, such as a dynamic control flow (e.g., "if ... then ... else"
statement), with a condition depending on an encrypted value. In

mm18 manuscript JPEG Decompression in the Homomorphic Encryption Domain MM’18, October 2018, Seoul, Korea

general, an FHE computer can only execute programs of static con-
trol structures (i.e., programs that can be converted into a linear
sequence of instructions). There are a number of regularization
techniques to convert a dynamic control structure into a static
one. For example, the following conditional assignment operation,
x = c ? a : b, can be converted to an equivalent static structure:
x = (c AND a) XOR ((1 XOR c)AND b) [2].

Single-Instruction Multiple-Data (SIMD)[23], supported by BGV,
is a technique to pack multiple plaintexts into one ciphertext, which
significantly reduces the size of ciphertexts and allows parallelized
processing. Apparently, parallelized processing in SIMD requires
that operations on each packed plaintext are identical.

For more information on homomorphic encryption, interested
readers are referred to a recent review paper [1].

2.2 JPEG
JPEG [24] is a standard image compression scheme that has been
widely used in practice. At encoding, an image is partitioned into
8 × 8 blocks. Each block is DCT-transformed and quantized. The 64
quantized DCT coefficients in each block are then ordered zig-zag
wise, transformed into a sequence of intermediate symbols before
entropy and variable-length encoded. For AC coefficients, a pair
of symbols are used to represent a nonzero AC coefficient and its
preceding zero-valued AC coefficients:

S1 : (Runlenдth, Size) S2 : (Amplitude)
where Runlenдth ∈ [0, 15] represents the zero-run, i.e., the number
of consecutive zero-valued AC coefficients before the nonzero AC
coefficient, Size is the number of bits taken by Amplitude , and
Amplitude represents the value of the non-zero AC coefficient.
When an actual zero-run is over 15, S1 = (15, 0) is used to represent
a zero-run of 16. A special symbol, (0, 0), is used to indicate end of
block (i.e., the remaining AC coefficients are all zeros). This symbol
is thus referred to as the EOB (End Of Block) symbol.

DC coefficients are differentially encoded, with each differential
DC coefficient represented by the two symbols:

S1 : (Size) S2 : (Amplitude)
where Size and Amplitude are defined similarly as their counter-
parts for AC coefficients.

For both AC and DC coefficients, S1 is Huffman-encoded, while
S2 is Variable-Length Integer (VLI) encoded. Both encodings result
in variable-length codewords.

JPEG decompression reverses the aforementioned encoding pro-
cess to recover the image from a bitstream of JPEG-compressed
image. To recover 63 quantized AC coefficients in a block, a bit-
stream is compared with an AC Huffman table to determine a
matched codeword, which in turn determines Runlenдth and Size
in S1. Runlenдth tells the number of preceding zero-valued AC co-
efficients, and Size tells the number of bits to read for Amplitude
to determine a quantized nonzero AC coefficient. The differential
DC coefficient in a block is recovered in a similar manner. The
quantized DC coefficient in the block is recovered by adding the
differential DC coefficient to the quantized DC coefficient of the
preceding block. The recovered quantized DCT coefficients in each
block are then dequantized, transformed with an inverse DCT, and
rounded to the valid range of pixel values.

1111000 111001 1111000 101101 1111111110011000 10111 1010

 (0, 6) (57); (0, 6) (45); (4, 5) (23); (0, 0)

57, 45, 0, 0, 0, 0, 23, 0, 0, 0, 0, 0, 0, 0, … , 0

Huffman

code

56 zeros

Runlength/Size Code length Codeword

0/0 4 1010

...

0/6 7 1111000

...

4/5 16 1111111110011000

...

AC Huffman table

Huffman decoding for S1

 Amplitude

VLI decoding for S2

Get 63 quantized AC coefficients

Figure 1: An example of decoding 63 quantized AC coeffi-
cients of a 8 × 8 block.

Fig.1 shows the process to decode AC coefficients of a block.
In comparing the bitstream with codes in the AC Huffman ta-
ble, S1 = (0, 6) with codeword = 1111000 is matched. It means
there is no preceding zero and the number of bits for S2 is 6. By
VLI-decoding the subsequent 6 bits, S2 = (57) is obtained. By ap-
plying this procedure iteratively, another two pairs of symbols,
S1 = (0, 6), S2 = (45) and S1 = (4, 5), S2 = (23) are recovered, and
then (0, 0), i.e., EOB, is matched, which indicates the remaining
AC coefficients are all 0. These symbols are then converted to 63
quantized AC coefficients of the block: 57, 45, 0, 0, 0, 0, 23, 0, . . . , 0.

3 HUFFMAN DECODING IN HOMOMORPHIC
ENCRYPTION DOMAIN

3.1 Challenges and Our Solution
From the decoding procedure described in Section 2.2, there is a
dynamic control structure in each iteration to decode a set of sym-
bols S1 and S2, wherein a different number of bits in a bitstream is
consumed and a different number of quantized DCT coefficients is
recovered depending on the matched Huffman codeword. As men-
tioned in Section 2.1, a FHE computer does not support dynamic
control structures, and there is a subtle difference between a FHE
computer and a normal computer. Although comparison of a bit-
stream with each codeword in a Huffman table can be executed by
a FHE computer, the inaccessibility of which codeword is actually
matched makes a FHE computer unable to determine the number
of recovered DCT coefficients and their values recovered as well as
the number of bits consumed in an iteration, or to determine when
one block’s decoding is done and the next block’s decoding should
start. This means that a FHE computer cannot execute the JPEG
decoding procedure described in Section 2.2 even when the known
regularization techniques are applied to convert dynamic control
structures to static ones.

By examining the bottleneck for enabling a FHE computer to
execute the JPEG decoding process, we came up with a novel ap-
proach of regularizing the JPEG decoding: instead of producing a
variable number of DCT coefficients per iteration, we would like to
recover one quantized DCT coefficient per iteration, resulting in a

MM’18, October 2018, Seoul, Korea B. Trovato et al.

fixed number of iterations per block, i.e., 63 iterations for AC coef-
ficients and one iteration for DC coefficient. To achieve this goal, a
matched codeword associated with n(> 1) coefficients is replaced
by a codeword associated with the remaining n − 1 coefficients in
each decoding iteration. For example, if the codeword of S1 = (3, 4)
is matched in an iteration, the codeword is then replaced by the
codeword associated with S1 = (2, 4), and a zero-valued coefficient
is output for the current iteration. This process may require adding
additional codewords to a Huffman table for proper decoding. For
example, when the codeword of S1 = (15, 0), which means 16 con-
secutive zeros, is matched, the codeword should be replaced with
a codeword representing 15 consecutive zeros1. Such a codeword
does not exist in a Huffman table. Additional codewords can be
added in several ways, as described in Section 3.3.

With the above regularization technique, conditional branch op-
erations in a conventional JPEG decoding procedure, with different
branches consuming a different number of bits and recovering a
different number of quantized DCT coefficients, are regularized to a
static control structure program. The identical sequential operations
in an iteration brings on a side benefit: our JPEG decoding scheme
enables parallelized decoding in SIMD, wherein decoding one DCT
coefficient on ciphertexts corresponds to decoding multiple plain-
text coefficients. This parallelized decoding is unimaginable for a
conventional JPEG decoding procedure.

3.2 Regularized Huffman Decoding
The encryption scheme will be described in Section 5. For the time
being, we assume that each bit in a payload of a JPEG bitstream
is individually encrypted with a homomorphic encryption scheme
such as BGV, while Huffman tables are not encrypted. For an en-
crypted bitstream of an 8 × 8 block, the operations shown in Fig. 2
are applied to derive the 64 quantized DCT coefficients of the block,
which are still encrypted. At the beginning of each iteration to de-
code one DCT coefficient in a block, it checks if it has already output
64 quantized DCT coefficients. If the answer is positive, decoding
the current block is done. Otherwise it calculates an encrypted bit
[b] for each codeword in the current Huffman table, which indi-
cates if the codeword matches the current bitstream or not (see
Section 3.2.1). Then it calculates a coefficient as the output of the
current iteration (see Section 3.2.2), and generates a new bitstream
for the next iteration unless it is the last iteration for the block (see
Section 3.2.3). Instead of using an encrypted counter to indicate the
starting position of the bitstream for the current iteration like in
a conventional JPEG decoding procedure, we adopt an approach
to drop consumed bits, with a new bitstream generated at the end
of each iteration to serve as the bitstream for the next iteration. In
this way, the bitstream at each iteration always starts from the very
beginning. This approach simplifies the decoding scheme.

In the following description, Z2 is used: each plaintext is a bit,
with addition (+) and multiplication (∗) being the operations on Z2,
i.e., XOR gate and AND gate, respectively. We use a pair of square
brackets, "[]", to represent ciphertext and a subindex (staring from
0) to indicate the position of an element in a collection. For example,
[b] means a ciphertext of plaintext b, and [bits]0 means the first

1This codeword differs from a codeword of (15, k) with k > 0 since the subsequent
coefficient of (15, 0) may not be a nonzero coefficient.

Start

HE Encrypted Bitstream

of output coefficient < 64? End

 Generate a new bitstream for next iteration

(See Section 3.2.3)

Match each codeword with the bitstream

(See Section 3.2.1)

 Compute an output coefficient

(See Section 3.2.2)

No

Yes

Figure 2: A flow chart of the proposed scheme to decode an
8 × 8 block.

ALGORITHM 1: Match a codeword
Input: Bits: a0, a1, . . . , an−1, and encrypted bits:

[bits]0, [bits]1, . . . , [bits]n−1.
Output: Encrypted [b].
[b] = [1];
for i = 0 to n − 1 do

if ai = 1;
then

[b]=[b] * [bits]i ;
end
[b]=[b] * ([bits]i + [1]);

end

encrypted bit in an encrypted bitstream [bits]. For simplicity, a
collection of plaintexts inside a pair of square brackets denotes a
collection of their corresponding ciphertexts, and an integer inside
a pair of square brackets denotes binary encryption of the integer’s
bits in two’s complement representation . For example, [010110]
denotes a sequence of ciphertexts [0][1][0][1][1][0], and [22] ≡
[010110] ≡ [0][1][0][1][1][0] if we use 6 bits to represent an integer.

3.2.1 Determining A Matched Codeword. For a given encrypted
bitstream, we need to determinewhich codeword in aHuffman table
matches. As we have mentioned, Huffman tables are not encrypted.
For an n-bit codeword, a0,a1, . . . ,an−1, Algorithm 1 compares with
the firstn bits of the encrypted bitstream, [bits]0, [bits]1, . . . , [bits]n−1,
and outputs an encrypted bit, [b], with b = 1 if the codeword
matches the bitstream, and otherwise b = 0.

In the above algorithm, [x] + [1] is equivalent to [NOT x] for a
bit x . Huffman coding guarantees that there is one and only one
codeword would match the bitstream at each iteration. That implies
that, when Algorithm 1 is applied to all codewords in the current
Huffman table, there is one and only one codeword with b = 1. All
the other codewords would have their b = 0. This property enables
bitwise computation for a computation on a sequence of bits, which
will be used in Sections 3.2.2 and 3.2.3.

3.2.2 Output One Coefficient. A codeword in a Huffman table
may generate a zero-valued coefficient or a nonzero coefficient
in an iteration. In the latter case, a number of bits determined by

mm18 manuscript JPEG Decompression in the Homomorphic Encryption Domain MM’18, October 2018, Seoul, Korea

ALGORITHM 2: VLI decoding to find an encrypted coefficient
Input: The number of bits n to read in and the number of bits

m (m ≥ n + 1) to represent a coefficient, and encrypted bits:
[bits]0, [bits]1, . . . , [bits]n−1.

Output: Encrypted coefficient [C] ≡ [C0][C1] . . . [Cm−1].
[Siдn] = [1] + [bits]0 ; // sign bit: [Siдn] = NOT [bits]0
for i = 0 tom − n − 1 do

[Ci] = [Siдn]; // assign the sign bit and extend it.
end
for i =m − n tom − 1 do

[Ci] = [bits]i−m+n ;
end
[C] = [C]+ [Siдn]; // add bit [Siдn] to coefficient [C] ≡ [C0] . . . [Cm−1].

Size in symbol S1 associated with the codeword is read and VLI-
decoded. This VLI-decoding process is executed as described in
Algorithm 2: for n ≡ Size bits, it outputs an encrypted coefficient
[C] ≡ [C0][C1] . . . [Cm−1] represented inm bits, wherem ≥ n + 1.

For each codeword, such as i-th codeword wi , in the Huffman
table, we calculate its boolean [bwi] using Algorithm 1 and its
output coefficient [C(wi)] ≡ [Cwi

0][Cwi
1] . . . [Cwi

m−1] if matched. Al-
gorithm 2 is used if the coefficient is a nonzero coefficient. The
output coefficient [C] ≡ [C0][C1] . . . [Cm−1] of the current itera-
tion is just the sum of these output coefficients multiplied by their
corresponding boolean:

[C] =
∑
i
[C(wi)] ∗ [bwi].

By exploiting the fact that there is only one bwi = 1 for all the
codewordswi ∈ the Huffman table, the above summation can be
executed bitwise. For example, j-th encrypted bit [Cj] of the output
coefficient [C] can be computed as:

[Cj] =
∑
i
[Cwi

j] ∗ [bwi].

3.2.3 Generate a New Bitstream. Each codeword with more than
one coefficient is associated with a replacement codeword that
would replace it in generating a new bitstream. Codewords with
symbols (0,k) don’t associate with any replacement. For EOB sym-
bol (0, 0), the codeword is kept without dropping until the last
(i.e., 63rd) coefficient of the current block is output. In this way,
each codeword wi , if matched, would generate a new bitstream
[NewBits(wi)] ≡ [NBwi

0][NBwi
1] . . . by dropping its consumed

bits, and then inserting its replacement codeword at the begin-
ning should such a replacement codeword exist. The new bitstream
[NewBits] ≡ [NB0][NB1] . . . generated at the end of current itera-
tion is the summation of each codeword’s new bitstream multiplied
by the corresponding boolean that determines if the codeword is a
match or not:

[NewBits] =
∑
i
[NewBits(wi)] ∗ [bwi].

Like in Section 3.2.2, the above summation can be carried out bit-
wise. For example, j-th encrypted bit is calculated as:

[NBj] =
∑
i
[NBwi

j] ∗ [bwi]

where [bwi] carries the same meaning as in Section 3.2.2.

3.3 Adding Codewords
To enable our regularized iterative scheme to decode one coefficient
per iteration, additional codewords may need to be added to Huff-
man tables. In general, if S1 = (15, 0) is used in a bitstream, then the
following symbols must be added to the Huffman table: S1 = (Z , s)
meaning s consecutive zeros, where s ∈ [1, 15]. If S1 = (r , s), s > 0
is used in a bitstream, then either symbol S1 = (r − 1, s) or both
symbols S1 = (Z , r − 1) and S1 = (0, s) should be in the Huffman
table. If a needed symbol is not in a Huffman table, it is added to
the table.

Since all bitstreams are encrypted, our decoder does not know
if a codeword in a Huffman table has actually been used by any
bitstream or not. The worst scenario has to be assumed: any symbol
in a Huffman table might be used. As a result, finding missing
symbols can be readily done by examining all symbols in a Huffman
table. For example, if the baseline Huffman tables are used, the only
symbols we have to add to an AC Huffman table are just (Z , s) with
s ∈ [1, 15].

Symbols can be added into a Huffman table in several ways. We
can check if the Huffman table has any room to take additional
symbols. If it can take only a partial set of additional symbols, we
can add a special Escape symbol to escape to an indexing table
which contains the remaining symbols that cannot be added to the
Huffman table. In this case, Escape combined with an index to an
entry in the indexing table serves as a codeword in performing
operations described in Section 3.2. In a rare case that no symbol
can be added to a Huffman table, we would resort to the encoder to
add symbol Escape to the Huffman table, which might have a tiny
impact on JPEG coding efficiency. Otherwise added symbols have
no impact on other JPEG operations or usage.

3.4 An Huffman Decoding Example
We will show the regularized Huffman decoding process for the 63
AC coefficients given in the example shown in Fig.1. We assume
that the codewords for (3, 5), (2, 5), (1, 5), and (0, 5) are 11111110,
11111100, 11111000, 11100000, respectively, after adding codewords,
if necessary, in the Huffman table. For simplicity, we assume that a
coefficient is represented with 8 bits (using two’s complement).

In the first iteration, only codeword 1111000, i.e. (0, 6), has its
boolean matching bit b(0,6) = 1. Thus only its coefficient and
newbits would be output in this round. Since its Size = 6, by
reading the next 6 bits and applying the VLI-decoding described
in Algorithm 2, the coefficient associated with the codeword is
[00111001] ≡ [57], which is the output of the current round. This
codeword drop the consumed bits 1111000 111001 from the bit-
stream without inserting any codeword. Thus it produces a new
bitstream [11110001011011111111110011000101111010 . . .], which
is the input bitstream of the next iteration.

In the second iteration, only codeword 1111000, i.e. (0, 6), matches,
with its b(0,6) = 1. All other codewords’ boolean bits are 0. Like the
first iteration, this roundwould output coefficient [45] ≡ [00101101]
and a new bitstream [1111111110011000 10111 1010 . . .].

In the third iteration, only codeword 1111111110011000, i.e.,
(4, 5), matches. It will output a zero-valued coefficient [0] and a
new bitstream [11111110 10111 1010 . . .] by dropping the con-
sumed 1111111110011000 and inserting 11111110, the codeword

MM’18, October 2018, Seoul, Korea B. Trovato et al.

for (3, 5). The next three iterations are similar. Each iteration out-
puts a [0] coefficient, and a bitstream of [11111100 10111 1010 . . .],
[11111000 10111 1010 . . .], [11100000 10111 1010 . . .], respectively.

In the 7th iteration, only codeword 11100000, i.e., (0, 5), matches.
By reading the next 5 bits and applying the VLI-decoding, its coef-
ficient is [23] ≡ [00010111], which is the output coefficient in this
round, and its new bitstream is [1010 . . .].

In the 8th iteration, only codeword 1010, i.e., EOF (0, 0), matches.
It will output coefficient [0] and the same bitstream for the next
iteration. This will repeat until the 63rd iteration, in which [0] is
output as the coefficient, and 1010 is dropped from the bitstream as
the input bitstream for the next block.

4 IDCT AND OTHER OPERATIONS
Huffman decoding produces 64 quantized DCT coefficients per
8 × 8 block. Each quantized DCT coefficient is then dequantized by
multiplying the corresponding element in the quantization table,
which is an integer in [1, 255] for 8-bit images. As mentioned in
Section 2.1, n-bit integer multiplications can be performed on an
FHT computer. For an unencrypted quantization table like in our
encryption scheme, dequantization can be simply realized by left
shifting and additions of n-bit integers. For example, [C] × 3 =
([C] << 1) + [C].

After dequantization, the DCT coefficients in a block are inverse
DCT transformed. The inverse DCT transform in JPEG specification
[24] is a float DCT transform that cannot be executed on a FHE
computer. We adopt HEVC’s integer inverse DCT transform [8] in
our scheme. It applies 1-D integer inverse DCT twice, once on each
direction. At the end of each 1-D DCT transform, a scaling factor is
applied. Our scheme chooses scaling factor SIT 1 = 2−6 for the first
1-D inverse DCT and SIT 2 = 2−9 for the second 1-D inverse DCT.
They correspond to right shifts by 6 and 9 bits, respectively.

4.1 Bit Depth of Integers in Decoding
For n-bit integer operations, the larger the value of n, the more com-
plex the operation. We should minimize the bit depth of integers,
i.e., the number of bits needed to represent integers, at each stage
of JPEG decompression as much as possible. The bit depth at each
JPEG decoding stage is discussed in this subsection.

4.1.1 Bit Depth of DCT Coefficients. Before applying forward
DCT, pixel values of an input image are shifted from unsigned in-
teger in range [0, 28 − 1] to a signed integer in range [−27, 27fi?!1].
After forward DCT, the rounded DCT coefficients are integers in
range [−210, 210 − 1] [25]. Thus we need to use 11 bits to represent
AC coefficients and 12 bits to represent differential DC coefficients
(including the sign bit). Since the rounding operation in quantiza-
tion can introduce errors, which may increase bit depth by 1 after
dequantization. This means that bit depth L = 12 is sufficient to
represent quantized and dequantized DCT coefficients as well as
different DC coefficients.

4.1.2 Bit Depth of Integers in Inverse DCT. We adopt the worst
scenario analysis used in Section 6.2.5 in [8] find out bit depth
in each stage of the 1-D inverse DCT. Let the values to forward
DCT are all −27, the largest value in magnitude. The output of the
forward DCT is that only the DC coefficient is not zero. Inversely,

assume that the DC coefficient is −2L−1, the largest value in mag-
nitude that can be represented by L bits. The output of the first
1-D inverse DCT is a matrix with the the first column elements are
all equal to −2L−1 × 64 × 2−6 = −2L−1 and other elements are 0,
where 64 equals to the values of the elements in the first row of the
1-D inverse DCT. Thus the output of the first 1-D inverse DCT is L
bit, and intermediate integers during the transform is L + 6 bits (to
represent the worst integer −2L−1 × 64 = −2L+5).

By applying the second 1-D IDCT is applied to the output of
the first 1-D IDCT, we obtain a matrix with all elements equal to
−2L−1 × 64× 2−9 = −2L−4. Thus the output of the second 1-D IDCT
can be represented with L−3 bits, and intermediate integers during
the transform can be represented with L + 6.

By using L = 12 from Section 4.1.1, we conclude that the bit
depth is 12 bits for the output of the first 1-D IDCT and 9 bits for
the output of the second 1-D IDCT, and the bit depth of intermediate
integers in both stages is 18 bits.

4.1.3 Bit Depth in Removing Bias. The output values after the
inverse DCT are represented in 9 bits, i.e., in the range [−28, 28 − 1].
By removing bias 128 introduced before the forward DCT at the
encoding side, the resulting pixel values are in the range [−28, 28 −
1] + 128 = [−128, 383], which requires 10 bits to represent. The
final pixel values are in range [0, 255], i.e., represented as an 8-bit
unsigned integer.

4.2 Clipping Out-of-Range Pixel Values
Can we obtain the final pixel value just by dropping the first two
bits after removing bias 128? The answer is no. This is because
some resulting pixel values might stay outside the valid range due
to quantization errors and finite accuracy in calculations. We need
to clip out-of-range pixel values by setting negative values to 0 and
values larger than 255 to 255. This is achieved with the following
clipping scheme.

The input to the clipping scheme is a signed integer of 10 bits,
denoted asVin ≡ b9b8b7b6b5b4b3b2b1b0, while the output is an 8-bit
unsigned integer, denoted as Uout . Let U8 ≡ b7b6b5b4b3b2b1b0 be
the unsigned integer represented by the lowest 8 bits of Vin . If Vin
is in the valid range, then b9b8 = 00 andUout = U8. If b9 = 1, then
Vin < 0 andUout = 0, This can be realized withUout = (1−b9)×U8,
which is 0 if b9 = 1 andU8 is B − 9 = 0. For a positive out-of-range
value, b9 = 0 and b8 = 1, and Uout = 255. This can be achieved
with (1 − b8) × U8 + b8 × 255, which results in 255 if b8 = 1 and
U8 if b8 = 0. By combining these cases, we have the following
regularized clipping equation on ciphertexts:

[Uout] = ([1] − [b9]) × (([1] − [b8]) × [U8] + [b8] × [255]).

5 SIMD-PACKING AND ENCRYPTION
With our Huffman decoding described in Section 3.2, each block
is decoded with the same sequential operations. This is also true
for the remaining JPEG decompression operations described in
Section 4. This property enables us to apply SIMD for parallelized
Huffman decoding and calculations that decoding or calculating
one block in the encryption domain corresponds to decoding or
calculatingD plaintext blocks, whereD is determined by the param-
eters of homomorphic encryption. This desirable SIMD property

mm18 manuscript JPEG Decompression in the Homomorphic Encryption Domain MM’18, October 2018, Seoul, Korea

would also reduce the total size of ciphertexts since D plaintexts
would be encrypted into one ciphertext.

We encrypt only entropy coded bitstreams, i.e., entropy-coded
segments (ECSes), in a JPEG file. Using SIMD,D plaintext ECSes are
encrypted into a single ciphertext ECS. D is typically in hundreds
or thousands, such as D = 256 in our experiments. This can be
implemented together with JPEG encoder. We choose the first D
ECSes, with stuffing bytes removed if added. For each i-th bit in
these ECSes, we form a vector of D dimension and encrypt it into i-
th ciphertext. If bits in an ECS is exhausted, 0 is padded. This results
in an encrypted ECS of N ciphertexts, where N is the number of
bits of the longest ECS among the chosen D ECSes. N is treated
as meta data of the ciphertext ECS that will be used by our JPEG
decoder. This process is repeated until all the ECSes in the JPEG
file are encrypted.

Our encryption scheme leaves the quantization table and Huff-
man tables unencrypted. This is because JPEG is typically used
with the default value for the qualify factor and with the baseline
Huffman tables encoding an image. This this case, both the quan-
tization table and Huffman tables are known, and encryption of
either table would facilitate known-plaintext attacks that adver-
saries have access to a set of pairs of plaintexts and corresponding
ciphertexts. Another reason is that encryption of these tables would
produce more ciphertexts than encryption of ECSes for the test
images reported in Section 6.

How secure is our encryptions scheme? It is more secure than
selective encryption popular for image and multimedia encryption
[27]. Since the length of each ciphertext ECS equals to the longest
length of the corresponding D plaintext ECSes, there are typically
many possible combinations of the codewords in a Huffman table
to match the longest length of the plaintext ECS. In addition, adver-
saries knows neither which plaintext ECS is the longest among the
D plaintext ECSes nor the length of any ECS that is not the longest.
We believe that our encryption scheme is practically secure.

If we choose to encrypt the quantization table, the proposed
JPEG decoding is readily applicable: only the dequantization pro-
cess needs to be modified to multiplications of two encrypted in-
tegers, which a FHE computer supports. If we choose to encrypt
Huffman tables, the encryption side needs to add codewords to a
Huffman table if needed, associate each Huffman codeword with
its replacement codeword if there is any, encrypts each codeword
as well as its Size if the codeword is not associated with any re-
placement codeword. At the decoding side, Algorithm 1 needs to
the modified to [b] =∏

i ([ai] + [bits]i + [1]), and we need to add a
checking which one matches the encrypted [Size] among possible
values of Size in Algorithm 2. This checking is similar to checking
which codeword in a Huffman table matches the current encrypted
bitstream described in Section 3.2.1.

6 IMPLEMENTATION AND EXPERIMENTAL
RESULTS

6.1 Implementation and Experimental Setting
We have implemented the proposed scheme in C++ based on HElib
[18], which implements BGV and supports bootstrapping, and the
Independent JPEG Group’s implementation of JPEG [17]. In HELib,
a level is associated with a ciphertext, which cannot go beyond the

lowest level. Addition of two ciphertexts retains the lower level
of the two ciphertexts, while multiplication results in a level that
reduces the lower level of the two ciphertexts by 1. When the lowest
level is reached, no more computation can be performed on the
ciphertext unless it is bootstrapped.

Our JPEG decoding uses additions and multiplications of a poly-
nomial with a bounded degree on Z2. It can be executed with LHE
without any bootstrapping. In Algorithm 1, the matching boolean
b of the longest codeword has the most reduction in the level, and
the output new bitstream of the current iteration is determined by
this b. This worst scenario prevailing makes ciphertext level reduce
very fast, and the initial level has to be set high. We decided to boot-
strap match booleans in our experiments to have a low initial level.
For the experimental results reported in this paper, the following
parameters were used for BGV in our experiments,m = 4369, p = 2,
d = 16, r = 1, and the initial level L = 41, which led to D = 256, i.e.,
256 plaintext ECSes were packed together and encrypted into one
ciphertext ECS. In addition, we packed up to d = 16 ciphertexts in
each ciphertext bootstrapping.

The experiments were carried out on a server with Intel Xeon
CPU E5-2680 v4 of 2.40GHz with 14 physical (28 logical) Cores and
256GB of RAM running CentOS Linux release 6.5. Test images were
all 8-bit 256× 256 grayscale images. They were JPEG-encoded with
the default value of 75 for the quality factor, and with one 8 × 8
block in an ECS. With the setting, there were 4 encrypted ECSes
for an encrypted JPEG image.

6.2 Experimental Results
We collected the running time for JPEG decoding each test image.
After JPEG decoding, an resulting image is still encrypted. We then
decrypted it and compared with the original image to calculate the
PSNR value. We ran experiments for both the baseline Huffman
tables and the optimized Huffman tables were used in JPEG encod-
ing. In the latter case, only the used codeword were contained in a
Huffman table. For each case of Huffman tables, we conducted two
sets of experiments. In the first set of experiments, only the first 30
DCT coefficients per 8 × 8 block were decoded. In the second set,
all the 64 DCT coefficients in each 8 × 8 block were decoded.

Table 1 shows the running time with both cases of using the
optimized Huffman tables and the baseline Huffman tables for 6 rep-
resentative standard test images when the first 30 DCT coefficients
of per 8 × 8 block were decoded. It also shows the corresponding
PSNR of the resulting image (after decryption) in comparing with
the original image. Table 2 shows the same results when all the 64
DCT coefficients per 8 × 8 block were decoded.

Fig. 3 shows the decoded image after decryption against the
original image for the 6 test images shown in Tables 1 and 2 when
both 30 coefficients and all the 64 coefficients per 8 × 8 block were
decoded. We note that, for the same number of decoded DCT co-
efficient, the resulting image using the baseline Huffman tables is
identical to the one when the optimized Huffman tables were used
in encoding.

To verify the correctness of our JPEG decoder, we compared our
decoded images, after decryption, with the decoded images without
encryption using the JPEG decoder from the Independent JPEG
Group [17], with the same number of DCT coefficients decoded.

MM’18, October 2018, Seoul, Korea B. Trovato et al.

They agreed within a rounding error of 1. When the HEVC’s integer
inverse DCT was used to replace the inverse DCT in the JPEG
decoder of the Independent JPEG Group, they were identical. These
experimental results have proved the correctness of our proposed
JPEG decoding scheme on homomorphically encrypted JPEG as
well as its implementation.

Table 1: Running time of decoding the first 30 DCT coeffi-
cients per 8 × 8 block and the resulting PSNR after decryp-
tion in comparing with the original image. Images are all
8-bit 256 × 256 grayscale images.

Image Running Time (s) PSNR
Optimized Huffman Baseline Huffman (dB)

Barbara 7175.81 10510.36 36.79
Mandrill 6387.62 10454.95 33.03
Jetplane 7310.20 10517.57 37.38
Lena 6774.39 10518.38 35.53
Pepper 6876.15 10372.58 38.96

Walkbridge 6969.91 10780.00 33.65

Table 2: Running time of decoding all the 64 DCT coeffi-
cients per 8×8 block and the resulting PSNR after decryption
in comparing with the original image. Images are all 8-bit
256 × 256 grayscale images.

Image Running Time (s) PSNR
Optimized Huffman Baseline Huffman (dB)

Barbara 14785.22 21812.91 38.64
Mandrill 13177.91 22117.85 34.99
Jetplane 15020.84 21540.60 38.82
Lena 14103.90 21692.29 39.51
Pepper 14249.01 21909.66 39.80

Walkbridge 14520.20 21845.99 34.97

6.3 Discussions
From Tables 1 and 2, we can see that running times for different
images under the same setting don’t differ much, even though
some images are much easier to compress than others. This can
be explained by the fact that JPEG decoding in the homomorphic
encryption domain realizes its worst-case behavior due to inacces-
sibility to encrypted contents. We can also see that the difference
in running time when the baseline Huffman tables were used is
smaller than that when the optimized Huffman tables were used.
This is because different Huffman tables were used for different
images in the former case, while the same Huffman tables were
used for all the images in the latter case.

Another observation from Tables 1 and 2 is that the decoding
time of JPEG images encoded with the optimized Huffman tables is
about 30% to 40% shorter than that of JPEG images encoded with
the baseline Huffman tables. This is because that a baseline table
has much more codewords than an optimized Huffman table. Many
codewords in a baseline table may not be used during encoding, but

Figure 3: Original (left), decoded images (after decryption)
with the first 30 coefficients (middle) and all the 64 coeffi-
cients (right) per 8 × 8 block. The 6 images are in the same
order as in Table 1.

they have to be treated as if there were used in JPEG decoding in
the homomorphic encryption domain since a FHE computer cannot
distinguish used codewords from unused codewords.

Like other algorithms running in the homomorphic encryption
domain, JPEG decoding in the homomorphic encryption domain is
much (about 10,000 times) slower than the normal JPEG decoding.
It is still impractical for most applications. A recent paper proposed

mm18 manuscript JPEG Decompression in the Homomorphic Encryption Domain MM’18, October 2018, Seoul, Korea

a faster FHE scheme that can perform bootstrapping in less than
0.1s [11], much faster than the HELib’s bootstrapping, which takes
about 75s on our test computer with same BGV parameters used
in our experiments. This may bring hope of JPEG decoding in the
homomorphic encryption domain in some real applications. We
plan to use it and test its decoding time once its implementation
supports SIMD.

7 CONCLUSION
In this paper, we presented a novel scheme that enables JPEG de-
compression in the encryption domain of leveled or fully homo-
morphic encryption. The scheme applies a statically controlled
iterative procedure to decode one DCT coefficient per iteration. We
also presented IDCT and other decompression operations in the
encryption domain. Our scheme supports fully parallelized SIMD,
which encrypts multiple plaintexts into a single ciphertext and
processes one ciphertext corresponding to processing simultane-
ously multiple plaintexts. Our experimental results have proved
the feasibility and correctness of our proposed scheme. Although a
stride forwards, its execution is still too slow for most applications,
a common drawback for executing algorithms in the homomorphic
encryption domain. With advances of homomorphic encryption
studies, it may eventually become a reality in practical applications.
We hope that our scheme would shed a light on enabling more
practical algorithms in the encryption domain.

REFERENCES
[1] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. 2017. A

Survey on Homomorphic Encryption Schemes: Theory and Implementation.
arXiv:1704.03578 [cs] (April 2017). arXiv: 1704.03578.

[2] C. Aguilar-Melchor, S. Fau, C. Fontaine, G. Gogniat, and R. Sirdey. 2013. Recent
Advances in Homomorphic Encryption: A Possible Future for Signal Processing
in the Encrypted Domain. IEEE Signal Processing Magazine 30, 2 (March 2013),
108–117. https://doi.org/10.1109/MSP.2012.2230219

[3] Y. Bai, L. Zhuo, B. Cheng, and Y. F. Peng. 2014. Surf feature extraction in encrypted
domain. In 2014 IEEE International Conference on Multimedia and Expo (ICME).
1–6. https://doi.org/10.1109/ICME.2014.6890170

[4] M. Barni, P. Failla, R. Lazzeretti, A. R. Sadeghi, and T. Schneider. 2011. Privacy-
Preserving ECG Classification With Branching Programs and Neural Networks.
IEEE Transactions on Information Forensics and Security 6, 2 (June 2011), 452–468.
https://doi.org/10.1109/TIFS.2011.2108650

[5] T. Bianchi, A. Piva, and M. Barni. 2008. Implementing the discrete Fourier
transform in the encrypted domain. In 2008 IEEE International Conference on
Acoustics, Speech and Signal Processing. 1757–1760. https://doi.org/10.1109/
ICASSP.2008.4517970

[6] Tiziano Bianchi, Alessandro Piva, and Mauro Barni. 2009. Encrypted Domain
DCT Based on Homomorphic Cryptosystems. EURASIP Journal on Information
Security 2009, 1 (Dec. 2009), 716357. https://doi.org/10.1155/2009/716357

[7] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled) Fully
Homomorphic Encryption Without Bootstrapping. ACM Trans. Comput. Theory
6, 3 (2014), 13:1–13:36. https://doi.org/10.1145/2633600

[8] Madhukar Budagavi, Arild Fuldseth, and Gisle BjÃÿntegaard. 2014. HEVC Trans-
form and Quantization. In High Efficiency Video Coding (HEVC): Algorithms
and Architectures, Vivienne Sze, Madhukar Budagavi, and Gary J. Sullivan (Eds.).
Springer, 141–169.

[9] Sebastien Canard, Sergiu Carpov, Donald Nokam Kuate, and Renaud Sirdey. 2017.
Running compression algorithms in the encrypted domain: a case-study on the
homomorphic execution of RLE. https://eprint.iacr.org/2017/392.pdf. (2017).

[10] Yu-Chi Chen, Chih-Wei Shiu, and Gwoboa Horng. 2014. Encrypted signal-based
reversible data hiding with public key cryptosystem. Journal of Visual Communi-
cation and Image Representation 25, 5 (2014). https://doi.org/10.1016/j.jvcir.2014.
04.003

[11] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. 2016.
Faster Fully Homomorphic Encryption : Bootstrapping in Less Than 0.1 Seconds.
In ASIACRYPT 2016. 3 – 33.

[12] Zekeriya Erkin, Alessandro Piva, Stefan Katzenbeisser, R. L. Lagendijk, Jamshid
Shokrollahi, Gregory Neven, and Mauro Barni. 2007. Protection and Retrieval of

Encrypted Multimedia Content: When Cryptography Meets Signal Processing.
EURASIP J. Inf. Secur. 2007 (2007), 17:1–17:20. https://doi.org/10.1155/2007/78943

[13] S. Fau, R. Sirdey, C. Fontaine, C. A. Melchor, and G. Gogniat. 2013. Towards
Practical Program Execution over Fully Homomorphic Encryption Schemes. In
Int. Conf. on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC). IEEE,
284–290.

[14] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the 41st annual ACM symposium on Symposium on theory of computing
- STOC ’09. ACM Press, 169–169. https://doi.org/10.1145/1536414.1536440

[15] Craig Gentry, Shai Halevi, and Nigel P. Smart. 2012. Homomorphic Evaluation
of the AES Circuit. In Advances in Cryptology – CRYPTO 2012. Springer, Berlin,
Heidelberg, 850–867. DOI: 10.1007/978-3-642-32009-5_49.

[16] Marta Gomez-Barrero, Julian Fierrez, Javier Galbally, Emanuele Maiorana, and
Patrizio Campisi. 2016. Implementation of Fixed-Length Template Protection
Based on Homomorphic Encryption With Application to Signature Biometrics.
191–198.

[17] Independent JPEG Group. 2016. JPEG Reference Code, version 9b. http://jpegclub.
org/reference/reference-sources/. (2016). [Online; accessed Dec. 15, 2017].

[18] Shai Halevi. 2013. HElib: An Implementation of homomorphic encryption. https:
//github.com/shaih/HElib. (2013). [Online; accessed Dec. 15, 2017].

[19] R. L. Lagendijk, Z. Erkin, and M. Barni. 2013. Encrypted signal processing
for privacy protection: Conveying the utility of homomorphic encryption and
multiparty computation. IEEE Signal Processing Magazine 30, 1 (2013), 82–105.
https://doi.org/10.1109/MSP.2012.2219653

[20] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. 2011. Can Homo-
morphic Encryption Be Practical?. In Proceedings of the 3rd ACM Workshop on
Cloud Computing Security Workshop (CCSW ’11). ACM, New York, NY, USA,
113–124. https://doi.org/10.1145/2046660.2046682

[21] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In Advances in Cryptology — EUROCRYPT ’99. Springer,
Berlin, Heidelberg, 223–238. https://doi.org/10.1007/3-540-48910-X_16

[22] Zhan Qin, Jingbo Yan, Kui Ren, Chang Wen Chen, and Cong Wang. 2016.
SecSIFT: Secure Image SIFT Feature Extraction in Cloud Computing. ACM
Trans. Multimedia Comput. Commun. Appl. 12, 4s (2016), 65:1–65:24. https:
//doi.org/10.1145/2978574

[23] N. P. Smart and F. Vercauteren. 2014. Fully homomorphic SIMD operations.
Designs, Codes and Cryptography 71, 1 (April 2014), 57–81. https://doi.org/10.
1007/s10623-012-9720-4

[24] CCITT Recommendation T.81. 1992. Information Technology – Digital Compres-
sion and Coding of Continuous-tone Still Images – Requirements and Guidelines.
(1992).

[25] Gregory K.Wallace. 1991. The JPEG Still Picture Compression Standard. Commun.
ACM 34, 4 (April 1991), 30–44. https://doi.org/10.1145/103085.103089

[26] X. Zhang, J. Long, Z. Wang, and H. Cheng. 2016. Lossless and Reversible Data
Hiding in Encrypted Images With Public-Key Cryptography. IEEE Transactions
on Circuits and Systems for Video Technology 26, 9 (Sept. 2016), 1622–1631. https:
//doi.org/10.1109/TCSVT.2015.2433194

[27] Bin B. Zhu. 2006. Multimedia Encryption. In Multimedia Security Technologies
for Digital Rights Management, Wenjun Zeng, Heather Yu, and Ching-Yung Lin
(Eds.). Academic Press, 75–109.

https://doi.org/10.1109/MSP.2012.2230219
https://doi.org/10.1109/ICME.2014.6890170
https://doi.org/10.1109/TIFS.2011.2108650
https://doi.org/10.1109/ICASSP.2008.4517970
https://doi.org/10.1109/ICASSP.2008.4517970
https://doi.org/10.1155/2009/716357
https://doi.org/10.1145/2633600
https://eprint.iacr.org/2017/392.pdf
https://doi.org/10.1016/j.jvcir.2014.04.003
https://doi.org/10.1016/j.jvcir.2014.04.003
https://doi.org/10.1155/2007/78943
https://doi.org/10.1145/1536414.1536440
http://jpegclub.org/reference/reference-sources/
http://jpegclub.org/reference/reference-sources/
https://github.com/shaih/HElib
https://github.com/shaih/HElib
https://doi.org/10.1109/MSP.2012.2219653
https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1145/2978574
https://doi.org/10.1145/2978574
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1145/103085.103089
https://doi.org/10.1109/TCSVT.2015.2433194
https://doi.org/10.1109/TCSVT.2015.2433194

	Abstract
	1 Introduction
	2 Background
	2.1 Homomorphic Encryption
	2.2 JPEG

	3 Huffman Decoding in Homomorphic Encryption Domain
	3.1 Challenges and Our Solution
	3.2 Regularized Huffman Decoding
	3.3 Adding Codewords
	3.4 An Huffman Decoding Example

	4 IDCT and Other Operations
	4.1 Bit Depth of Integers in Decoding
	4.2 Clipping Out-of-Range Pixel Values

	5 SIMD-Packing and Encryption
	6 Implementation and Experimental Results
	6.1 Implementation and Experimental Setting
	6.2 Experimental Results
	6.3 Discussions

	7 Conclusion
	References

