
A Heuristic Framework to Detect Concurrency Vulnerabilities
Changming Liu, Deqing Zou∗

Peng Luo
Service Comp. Tech. and System Lab,
Cluster and Grid Computing Lab,
School of Computer Sci. and Tech.,
Huazhong Univ. of Sci. and Tech.

Wuhan, China

Bin B. Zhu
Microsoft Research Asia

Beijing, China
binzhu@microsoft.com

Hai Jin
Service Comp. Tech. and System Lab,
Cluster and Grid Computing Lab,
School of Computer Sci. and Tech.,
Huazhong Univ. of Sci. and Tech.

Wuhan, China

ABSTRACT
With a growing demand of concurrent software to exploit multi-
core hardware capability, concurrency vulnerabilities have become
an inevitable threat to the security of today’s IT industry. Existing
concurrent program detection schemes focus mainly on detecting
concurrency errors such as data races, atomicity violation, etc.,
with little attention paid to detect concurrency vulnerabilities that
may be exploited to infringe security. In this paper, we propose a
heuristic framework that combines both static analysis and fuzz
testing to detect targeted concurrency vulnerabilities such as con-
currency buffer overflow, double free, and use-after-free. The static
analysis locates sensitive concurrent operations in a concurrent pro-
gram, categorizes each finding into a potential type of concurrency
vulnerability, and determines the execution order of the sensitive
operations in each finding that would trigger the suspected concur-
rency vulnerability. The results are then plugged into the fuzzer
with the execution order fixed by the static analysis in order to
trigger the suspected concurrency vulnerabilities.

In order to introduce more variance which increases possibility
that the concurrency errors can be triggered, we also propose ma-
nipulation of thread scheduling priority to enable a fuzzer such as
AFL to effectively explore thread interleavings in testing a concur-
rent program. To the best of our knowledge, this is the first fuzzer
that is capable of effectively exploring concurrency errors.

In evaluating the proposed heuristic framework with a bench-
mark suit of six real-world concurrent C programs, the framework
detected two concurrency vulnerabilities for the proposed con-
currency vulnerability detection, both being confirmed to be true
positives, and produced three new crashes for the proposed inter-
leaving exploring fuzzer that existing fuzzers could not produce.
These results demonstrate the power and effectiveness of the pro-
posed heuristic framework in detecting concurrency errors and
vulnerabilities.

∗Corresponding author: Deqing Zou (deqingzou@hust.edu.cn). This work was sup-
ported by the National 973 Fundamental Basic Research Program under grant No.
2014CB340600.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’18, December 3–7, 2018, San Juan, PR, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6569-7/18/12. . . $15.00
https://doi.org/10.1145/3274694.3274718

CCS CONCEPTS
• Security and privacy→ Software security engineering;

KEYWORDS
Concurrency Vulnerabilities, Fuzzing Test, Thread Schedule.

ACM Reference Format:
Changming Liu, Deqing Zou, Peng Luo, Bin B. Zhu, and Hai Jin. 2018.
A Heuristic Framework to Detect Concurrency Vulnerabilities. In 2018
Annual Computer Security Applications Conference (ACSAC ’18), December
3–7, 2018, San Juan, PR, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3274694.3274718

1 INTRODUCTION
Concurrent programs can provide significantly more computing
power than sequential programs and have been applied in many
demanding applications, e.g. cloud services. However, concurrent
programs are prone to concurrency vulnerabilities that may cause
severe consequences, e.g. dirty copy on write[31], a well-known
concurrency vulnerability found in the Linux kernel, and attacks
specifically targeting at concurrent programs to disrupt confidential-
ity, integrity or availability of the system [33]. It is a great challenge
to detect concurrency bugs and vulnerabilities since there are too
many interleavings in a typical concurrent program.

thread 1
1030 if (type == rr->type) /* SSL3_RT_APPLICATION_DATA or SSL3_RT_HANDSHAKE */

{
[...]

1050 if (!peek)
1051 {
1052 rr->length-=n;
1053 rr->off+=n;
1054 if (rr->length == 0)
1055 {
1056 s->rstate=SSL_ST_READ_HEADER;
1057 rr->off=0;
1058 if (s->mode & SSL_MODE_RELEASE_BUFFERS)
1059 ssl3_release_read_buffer(s);

1060 }
1061 }
1062 return(n);
1063 }

thread 2

124 int ssl3_read_n(SSL *s, int n, int max, int extend)
125 {

[...]
140 rb = &(s->s3->rbuf);
141 if (rb->buf == NULL)
142 if (!ssl3_setup_read_buffer(s))
143 return -1;

Figure 1: CVE-2010-5298 in s3_pkt.c of OpenSSL

https://doi.org/10.1145/3274694.3274718
https://doi.org/10.1145/3274694.3274718
https://doi.org/10.1145/3274694.3274718


ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Changming Liu, Deqing Zou, Peng Luo, Bin B. Zhu, and Hai Jin

Fig. 1 shows a real-world concurrency use-after-free vulnerabil-
ity found in s3_pkt.c of OpenSSL. This vulnerability is triggered
at line 143 where thread 2 sets up a buffer s for later usage, and
before the buffer is used, another thread, thread 1, releases this same
piece of memory s at line 1059. This would allow remote attackers
to inject data across sessions or cause denial of service [17]. The
patch to this vulnerability is simply to add a condition inside the
if-condition clause at line 1058 to check if there is still unprocessed
data left in s before releasing it at line 1059 [18].

Detecting concurrency errors has been extensively studied, mainly
focusing on detecting data races, i.e. multiple simultaneous accesses
to shared memory with at least one write. Both static and dynamic
approaches have been used. However, methods aiming at detect-
ing data races in concurrent programs are generally inadequate in
detecting real-world concurrency vulnerabilities that can happen
even when a concurrent program is race-free. For example, in the
case shown in Fig. 1, making the two threads’ accesses to the shared
buffer s, i.e. lines 142 and 1059, race-free would not prevent the
aforementioned vulnerability from happening.

The concurrency vulnerability shown in Fig. 1 is similar to the
order violation described in [21, 36], wherein multiple concurrent
accesses, protected by a lock respectively, to shared memory can
cause crashes of the program. If the free operation at line 1059
is executed after finishing using the buffer, the vulnerability will
never occur. On the other hand, if their execution order is reversed,
the vulnerability will occur. In a concurrent program, the execution
order of threadsmay be uncontrollable, and awrong execution order
may occur, leading to a vulnerability that may be exploited to inject
data across sessions or cause denial of service. Existing methods
[21, 36] of detecting order violation are all based on monitoring
memory accesses, e.g. read/write, and the order violations they can
detect are likely to cause concurrency errors instead of concurrency
vulnerabilities that this paper focuses on. This limitation has been
lifted in our approach.

In this paper, we propose a heuristic framework that combines
both static analysis and fuzz testing to detect concurrency vulnera-
bilities, particularly concurrency buffer overflows, double-free, the
two most common concurrency vulnerabilities as reported in the
National Vulnerability Database [16], and the aforementioned con-
currency use-after-free. A concurrency buffer overflow typically
occurs when two threads access shared memory and one of them
modifies the shared memory, possibly with maliciously crafted con-
tent, before the other passes the shared memory to a memcpy-like
function. A real-world concurrency buffer overflow example will
be presented in Section 3. Concurrency double-free is intuitive: two
concurrent free operations on the same memory, and this can result
in undefined behaviors. In addition, we also propose an interleaving
exploring strategy in the heuristic framework to enable fuzz test-
ing to explore thread interleavings effectively so that it can detect
concurrency errors in concurrent programs more efficiently.

Our framework consists of the following three main techniques
we have developed:

• StaticAnalysis forConcurrentOperations. In this paper,
we use static analysis to detect sensitive concurrent opera-
tions that are likely to lead to concurrency vulnerabilities.

More specifically, we collect a set of sensitive concurrent op-
erations and distill distinct operation patterns for each type
of concurrency vulnerability by studying the characteristics
of real-world concurrency vulnerabilities, and leverage static
analysis to locate sensitive concurrent operations, whether
protected by mutex or not, in a program. We compare each
finding against the operation patterns of each type of con-
currency vulnerability, and categorize it to a certain type of
vulnerability, e.g. a concurrency buffer overflow, double-free,
or use-after-free that we have chosen as an example to study
the proposed heuristic framework in this paper. We should
point out that our framework can be readily extended to
detect other types of concurrency vulnerabilities.

• Exploring Thread Interleavings in Fuzz Testing. Fuzz
testing is criticized for being inadequate to detect concur-
rency errors. One major reason is that, although very capa-
ble of exploring new branches at conditional jumps, current
state-of-the-art fuzzers such as AFL [13] are unaware of
thread scheduling and thus cannot explore enormous inter-
leavings as capable as they are in exploring path changes.
To enable a fuzzer to explore thread interleavings as effec-
tively as it explores path changes, we develop a thread-aware
fuzzer that randomizes priorities of forked threads to explore
thread interleavings to cover as many interleavings as pos-
sible, i.e., in each iteration of fuzz testing, we select one or
more threads to manipulate their priorities towards untested
interleavings. This ensures that more interleavings are likely
to be explored with increasing iterations of fuzz testing. We
have found several new crashes using this approach. To the
best of our knowledge, we are the first to design a fuzzer to ef-
fectively explore thread interleavings to detect concurrency
errors/vulnerabilities.

• Targeting Scheduling for Sensitive Concurrent Opera-
tions. Like order violation mentioned in [21, 36], the exe-
cution order of concurrent operations is typically critical
in triggering concurrency vulnerabilities. For example, the
vulnerability shown in Fig. 1 can be triggered only if the
free operation is called before the shared memory is used.
Unlike order violation detection schemes in [21, 36] that
detect order violation patterns in run time, we first apply
static analysis to locate sensitive concurrent operations and
identify the potential concurrency vulnerabilities they may
lead to as well as the specific execution order to trigger each
potential vulnerability. The information enables us to in-
sert priority adjusting code to force the sensitive concurrent
operations of a potential concurrency vulnerability to be exe-
cuted in the specific order in fuzz testing so that the potential
vulnerability has a high chance to be triggered.

This paper has the following major contributions by proposing:

• A novel approach to effectively detect concurrency vulner-
abilities: locating sensitive concurrent operations that may
lead to a potential concurrency vulnerability and forcing a
specific execution order of threads to trigger the potential
concurrency vulnerability in fuzz testing. By studying the
characteristics of some common real-world concurrency vul-
nerabilities, we have found that each type of concurrency



A Heuristic Framework to Detect Concurrency Vulnerabilities ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

vulnerability has a few sensitive concurrent operations and
distinct operation patterns. This allows us to apply static
analysis to locate sensitive concurrent operations that po-
tentially lead to a concurrency vulnerability and to use the
operation patterns to identify the potential type of concur-
rency vulnerability along with the specific execution order to
trigger it. This enhances the opportunity to trigger the con-
currency vulnerability in fuzz testing by adjusting thread’s
priorities to force the program to be executed in the desig-
nated execution order.

• An effective method to explore thread interleavings of con-
current programs in fuzz testing: randomizing priorities of
threads to explore as many interleavings as possible. This
can be achieved by injecting code to adjust threads’ priorities,
forcing threads to sleep for a random or specific time, etc.,
towards untested interleavings. This empowers a fuzzer to
explore effectively not only code paths but also concurrent
interleavings and can significantly improve the effectiveness
of fuzz testing on testing concurrent programs.

This paper is organized as follows. We present the related work
in Section 2 and study real-world examples of concurrency vulner-
abilities in Section 3. Our static analysis is described in Section 4,
and the fuzzing strategies for concurrent programs are described in
Section 5. Our implementation of the proposed heuristic framework
is described in Section 6, and the evaluation results are presented in
Section 7. Limitations of the current implementation of the heuris-
tic framework and the future work are described in Section 8. The
paper concludes with Section 9.

2 RELATEDWORK
2.1 Static Analysis to Detect Concurrency

Problems
Many static approaches have been proposed to handle concurrency
problems, such as [23, 28, 29]. Context-sensitive correlation analysis
is proposed in [23] to check if every memory location in a program
is consistently correlated with a lock, and its detection is proved
to be accurate. Aiming at the same, the method in [28] employs
a concept of relative lockset to gain significant scalability. As we
mentioned before, existing static analysis focuses mainly on data
races, which are quite different from concurrency vulnerabilities we
focus on. A static method specifically for double-fetch situations is
proposed in [29] which designates certain static patterns for double-
fetch situations and detects double-fetch situations by matching
these patterns. This method is scalable and can find many double-
fetch vulnerabilities, yet it is hard to extend to detect other types
of concurrency vulnerabilities.

2.2 Concurrency Error Detection
Existing concurrency error detection techniques can be classified
into two categories: heuristic techniques and test techniques. Heuris-
tic techniques [19–21] detect concurrency errors based on error
patterns or characteristics. These methods construct heuristic rules
and statically scan the whole program to find violation of these
rules. These heuristic rules may not catch all running situations, es-
pecially for concurrent programs. To tackle this problem, dynamic

analysis has been developed. For example, CTrigger [19] uses a
dynamic method to detect atomicity violations by analyzing in-
terleaving characteristics of synchronization events in concurrent
programs.

Test techniques detect concurrency errors by running target pro-
grams with system scheduling or designated tests to trigger concur-
rency errors. They typically aim at covering as many interleavings
as possible by generating either tests [7, 26, 27] or schedules [3, 34]
to detect concurrency errors. Compared with heuristic techniques,
a test technique usually suffers from low efficiency and thus needs
significant amount of time to test. These concurrency error detec-
tors focus mainly on access interleavings of shared memory, with
expensive analysis and complex test or scheduler generation, and
are often used for unit tests instead of system tests due to their
complexity. As a comparison, our interleaving exploring method
for fuzz testing applies a lightweight method to adjust threads’ pri-
orities to explore thread interleavings rather than memory access
interleavings, and is thus scalable to test much larger concurrent
programs.

Since concurrency vulnerabilities are caused by concurrency
errors, a natural thought would be to apply concurrency error de-
tectors to detect concurrency vulnerabilities. This approach does
not work well in general for detecting concurrency vulnerabilities
since these concurrency error detectors focus mainly on detecting
three types of concurrency errors: data races, atomicity violations,
and order violations. As we mentioned in Section 1, concurrency
vulnerabilities may occur even when all the types of concurrency
errors these detectors focus on have been cleared off. Triggering
a concurrency vulnerability normally needs to meet two require-
ments: a specific input and a specific scheduling. These concurrency
error detectors aim at exploring bug-triggering interleavings and
typically will not meet the required input and the required schedul-
ing simultaneously to trigger a concurrency vulnerability.

Our method to detect concurrency vulnerabilities borrows some
ideas from the order violation detection proposed in [21, 36] and
the active testing proposed in [4, 11, 35]. The former focuses on
detecting wrong execution orders that lead to concurrency errors
in a concurrent program. The latter targets at specific bug types
such as data races by applying a static detector to predict buggy
thread interleavings and then executing a suspected buggy thread
interleaving in a real execution to try to trigger the bug. These
methods focus on detecting concurrency errors rather than con-
currency vulnerabilities and, as just mentioned, unlikely effective
in detecting concurrency vulnerabilities. We have extended these
ideas to detect concurrency vulnerabilities.

An interesting yet loosely related work [37] has been proposed
recently to detect concurrency attacks by relying on an attack in-
ference model that models behaviors of concurrency attacks in the
three stages of their life-cycle in launching an attack: a concurrency
bug is first triggered to corrupt shared memory, then the corrupted
memory propagates across functions and threads, which may go
across memory boundaries (e.g., buffer overflows) during propaga-
tion, and finally the corrupted memory flows to vulnerable sites
(e.g., eval() and setuid()) to complete an attack. The method has
produced some sound results: it has detected 5 new concurrency
attacks and eliminated 94.1% of the reports generated by existing
concurrency bug detectors as false positive.



ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Changming Liu, Deqing Zou, Peng Luo, Bin B. Zhu, and Hai Jin

2.3 Logic-Based Methods
A logic-based approach applies model-checking to detect concur-
rency errors. It adopts a constraint solver to check if there is an
error. Logic-based methods such as [9, 24] can produce sound repro-
ducible results, but they have to apply methods such as approxima-
tion, pruning etc. to deal with path explosion and heavy workload
in constraint solving, and thus are not scalable to a large amount
of interleavings. As a comparison, our proposed scheme is light-
weighted and thus is scalable to a large amount of interleavings.

2.4 Fuzz Testing
Fuzz testing has been widely used to detect software vulnerabilities
over the past twenty-some years since Miller et al. [15] introduced
it to test the robustness of UNIX utilities in 1990. Due to its effec-
tiveness in detecting software bugs and vulnerabilities, fuzz testing
has gained popularity since its introduction. The basic idea in fuzz
testing is to feed test programs with many mutated or random
inputs to produce irregular behaviors or to trigger vulnerabilities.
Fuzz testing can be divided into three types in general: black-box
fuzzing, white-box fuzzing, and gray-box fuzzing.

Black-box fuzzing requires neither knowing internal logics of
tested programs nor source code. As a result, many generated test
inputs may be uninteresting or cannot explore any deep path in
program semantics. Many methods [25, 30] have been proposed to
generate effective test inputs and explore deeper paths with the aid
of domain knowledge. To compare effectiveness of different black-
box fuzzing methods, Maverick et al. [32] proposed an analytic
framework to evaluate existing black-box fuzzing algorithms by
using a mathematic mutation model.

White-box fuzzing requires complete knowledge of the source
code and behaviors of targeted programs. Generally, it applies heavy
analysis techniques, such as dynamic symbolic execution, to gen-
erate test inputs and explore as many paths as possible. It is very
efficient at exploring new program paths in order to trigger more
bugs and vulnerabilities. A great challenge white-box fuzzing faces
is scalability: it is hard to scale to large programs due to path ex-
plosion [5]. An example of white-box fuzzing methods is presented
in [10].

AFL [13] is a popular gray-box fuzzer to detect software bugs. It
instruments a targeted program at every conditional jump instruc-
tion in compiling time, and then it keeps mutating an input and
running the program in order to explore new branches to find more
bugs. AFL is well-known to be explore sophisticated programs in a
shallow manner. Recently proposed gray-box fuzzers [6, 14] have
focused on addressing this low code coverage problem.

All existing fuzz testing methods have focused on exploring
more paths. They are unaware of thread scheduling and thus can-
not explore enormous concurrent interleavings as capable as they
explore path changes. As a result, they are ineffective in detecting
concurrency errors and vulnerabilities.

3 CASE STUDY OF CONCURRENCY
VULNERABILITIES

In this section, we study examples of real-world concurrency vul-
nerabilities selected from the National Vulnerability Database [16].

The study leads to finding sensitive concurrent operations and dis-
tinct operation patterns for each type of concurrency vulnerability
we study in this paper. We will use these in our static analysis which
is to be described in detail in Section 4.

3.1 Real-World Concurrency Vulnerabilities
We have shown a real-world concurrency use-after-free vulnera-
bility in Section 1. Fig. 2 shows another real-world concurrency
vulnerability, a concurrency buffer overflow, which is triggered
after computing how many escape characters contained in a NULL-
ended string s with the for-loop in lines 1921-1925 and its length
(including the ending NULL) at line 1928. The string and its length
are then passed to function apr_pmemdup. Meanwhile, if another
thread is allowed to modify the same piece of memory to make s
longer than length bytes, execution of line 119 in apr_pmemdup
will make NULL-ended string res not contain proper ending NULL.
String res is returned at line 120 and again at line 1932 for more
processing. When the content of the string is subsequently used,
such as in a memcpy-like function, the content beyond the allo-
cated memory will be included since the proper NULL ending of
the NULL-ended string has been overwritten by another thread,
resulting in a buffer overflow. This may lead to information leakage
or even getting total control over the CPU that happened in the
real world [12].

The above concurrency buffer overflow can be a data race prob-
lem wherein two threads access string str simultaneously and can
be prevented by applying a mutex to lock operations from line
1921 to 1933 to prevent other threads from accessing str during
execution of these lines. However, if a finer lock is applied, such
as the calling function and the called function in Fig. 2 being sepa-
rately locked, i.e., a mutex is used to lock accessing str in the calling
function, i.e., from line 1921 to line 1929, and the mutex is used
to lock accessing str (i.e., m) in function apr_pmemdup to prevent
other threads from accessing str simultaneously, then the program
is race-free, yet the concurrency buffer overflow can still happen
when another thread modifies the content of str after line 1928 has
been executed but before function apr_pmemdup starts to execute.
There are more real-world concurrency vulnerabilities, such as
CVE-2011-0990, CVE-2010-3864, etc. in the National Vulnerability
Database [16], that can still occur even when a program is race-free.

3.2 Characteristics of Concurrency
Vulnerabilities

Let us study the characteristics of concurrency buffer overflows.
A buffer overflow is triggered when the input data exceeds the
buffer’s boundary and overwrites adjacent memory locations. It
usually occurs in memory replication. Fig. 3 shows an example
of for-loop memory replication. In a concurrent program, source,
dest, or length might be modified in another thread after the correct
values of these three variables have been determined and before
the memory replication process has completed. This may trigger a
concurrency buffer overflow. Thus concurrency buffer overflows
have the following characteristics:

• Memory replication is required. Memory replication may
manifest in several ways: calling memory replication func-
tions such as memcpy and strcpy, using memory replication



A Heuristic Framework to Detect Concurrency Vulnerabilities ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

112: APR DECLARE(void *) apr pmemdup(apr pool t *a, const void *m, apr size t n)

113: {
114: void *res;

115:

116: if (m == NULL)

117: return NULL;

118: res = apr palloc(a, n);

119: memcpy(res, m, n);

120: return res;

121: }
...

1919: /* Compute how many characters need to be escaped */

1920: s = (const unsigned char *)str;

1921: for (; *s; ++s) {
1922: if (TEST CHAR(*s, T ESCAPE LOGITEM)) {
1923: escapes++;

1924: }
1925: }
1926:

1927: /* Compute the length of the input string, including NULL*/

1928: length = s - (const unsigned char *)str + 1;

1929:

1930: /* Fast path: nothing to escape */

1931: if (escapes == 0) {
1932: return apr pmemdup(p, str, length);

1933: }

Figure 2: An example of concurrency buffer overflow in
server/util.c in Apache

1: for(i=0; i<length; i++)

2: dest[i]=source[i];

Figure 3: An example of memory replication using for-loop

statements such as the for-loop shown in Fig. 3 or a while-
loop.

• At least one of source, dest, or length is a shared variable and
can be modified by other threads.

• The execution order is important to trigger a concurrency
buffer overflow: modification by another thread must be
executed before the memory replication completes.

Concurrency double-free and concurrency use-after-free can
also be characterized in a similar manner, for example, a shared
variable that can be accessed concurrently, and there are at least two
concurrent free operations on this shared variable for the former
or one free operation on the shared variable in one thread and
accessing the shared variable in another thread that may occur
after the free operation for the latter.

From the above concurrency vulnerabilities we can observe the
following common essential requirements to trigger one of these
concurrency vulnerabilities:

• Concurrent Access to Shared Memory. There must be at
least one shared variable that can be concurrently accessed
from multiple threads.

• Sensitive Concurrent Operations on Shared Memory.
Among concurrent accesses to the shared variable, there
is at least one sensitive operation that is vital to trigger a
concurrency vulnerability. Different concurrency vulnerabil-
ity has different sensitive operations. For example, sensitive
concurrent operations for a concurrency buffer overflow

are memory replication and content modification on shared
memory; two free operations on shared memory for con-
currency double-free; and one free operation and another
memory access on shared memory for concurrency use-after-
free.

• Execution inRight Order. A certain execution order of the
sensitive concurrent operations is typically critical in trig-
gering a concurrency vulnerability. For example, the mem-
ory modification must occur before (or during) the memory
replication for a concurrency buffer overflow, and the free
operation must happen before accessing the shared memory
for concurrency use-after-free. There is no ordering for con-
currency double-free since the two free operations play an
identical operation.

The above sensitive concurrent operations, operation patterns,
and execution orders to trigger concurrency vulnerabilities will be
used in our heuristic framework to detect concurrency vulnerabili-
ties in concurrent programs, as described in detail in the subsequent
two sections.

4 STATIC ANALYSIS
Our heuristic framework consists of static analysis and thread-
aware fuzzing. The static analysis is described in this section, while
the thread-aware fuzzing is described in the next section.

In our framework, static analysis aims at locating sensitive con-
current operations and categorizing each finding into a potential
type of concurrency vulnerability so that the thread-aware fuzzing
would adjust threads’ running priorities to enhance the chance to
trigger the potential concurrency vulnerability in fuzz testing.

Our static analysis consists of four steps: discovering shared
memory, marking sensitive operations, merging data flows, and
categorizing potential concurrency vulnerability type. Fig. 4 shows
the whole procedure of state analysis for concurrency double-free
at line 4 and line 9 in the code shown on the left-most side of the
figure.

4.1 Shared Memory Discovery
As described in Section 3.2, shared variables that can be concur-
rently accessed are essential in triggering a concurrency vulner-
ability. The first step focuses on finding shared memory that is
passed as a pointer when forking a new thread: whenever a new
thread is forked, we record the pointers that are passed through
pthread_create and potentially point to shared memory that can be
concurrently accessed.

Additionally, global variable access is another major source of
concurrent access. We handle this by recording all pointers that
point to a global variable in following three different places:

(1) A parent thread before a fork;
(2) A child thread;
(3) A parent thread after a fork.

Note that pointers that are passed through assignments such as
p2 = p1; p3 = p2; ..., are merely for data propagation rather than
genuine modification. These pointers point to the same memory
and thus should be treated as if an identical pointer. We apply a
filter on pointers to identify redundant pointers that essentially
point to the same piece of memory.



ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Changming Liu, Deqing Zou, Peng Luo, Bin B. Zhu, and Hai Jin

Figure 4: The whole procedure of static analysis for concurrency double-free vulnerability

Table 1: Sensitive operations and their meaning for a shared
variable

Operation The shared variable is
memcpy passed to a memcpy()-like function.
read normally read.

memset passed to a memset()-like function.
free passed to a free()-like function.
null assigned to NULL.
set set as left operand of an assign operation.

4.2 Sensitive Operation Marking
After locating shared variables in a concurrent program, we ex-
amine operations on these shared variables to collect all sensitive
concurrent operations on shared memory in a concurrent program.
More specifically, we first construct a data-flow graph with the
following connections among a parent thread and its child thread
in a fork operation:

• A connection from the parent thread before the fork to its
child thread;

• A connection from the parent thread before the fork to the
parent thread after the fork.

Fig. 5 shows the above connections in constructing a data-flow
graph. We then mark sensitive operations on the data-flow graph.
Table 1 lists common sensitive operations on a shared variable. In
this table, the left column lists the name of a sensitive operation we
refer to in this paper, and the right column explains the meaning of
corresponding sensitive operation. For example, sensitive operation
memcpy denotes that the share variable is passed as an argument to
system functionmemcpy() ormemcpy-like functions or code blocks
defined by users.

4.3 Data-flow Merging
Since a data-flow graph represents only sequential relations among
marked sensitive operations, we need to further construct a data
structure to reflect concurrent relations among these sensitive op-
erations. This is done by

• Merging all data-flows that share a common ancestor since a
shared common ancestor for different data-flows means dif-
ferent concurrent modifications to the same piece of shared
memory,

Figure 5: Data-flow graph construction

• Fine-tuning marked sensitive operations via a control-flow
graph to make sure that each operation pair we come up
with is indeed concurrent.

For the three types of concurrency vulnerabilities we use as
an example to study the detection performance of our heuristic
framework, sensitive concurrent operations of each type of con-
currency vulnerability form a pair. Fig. 4 shows a pair of sensitive
concurrent operations (at line 4 and line 9 of the code shown on the
left-most side of the figure) our static analysis finds out for concur-
rency double-free. This pair is a candidate to trigger a concurrency
double-free vulnerability.

4.4 Vulnerability Categorization
After obtaining pairs of sensitive concurrent operation in the last
step, we need to categorize each pair into a potential type of concur-
rency vulnerability based on each type’s operation patterns that we
have distilled in Section 3.2. This categorization is necessary since
a different type of concurrency vulnerability requires a different
pair of sensitive concurrent operations and a different execution
order of the sensitive concurrent operations in order to trigger the
concurrency vulnerability.

Table 2 provides exemplary pairs of sensitive concurrent oper-
ations for each type of concurrency vulnerability studied in this
paper. For a pair (A,B) of sensitive concurrent operations A and B
in Table 2, the sensitive operation on the left side, i.e., A, must be
executed before the sensitive operation on the right side, i.e., B, to
trigger the corresponding concurrency vulnerability unless both



A Heuristic Framework to Detect Concurrency Vulnerabilities ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Table 2: Exemplary pairs of sensitive concurrent operations
for each type of concurrency vulnerability

Concurrency Vulnerability Operation Pair
Double-Free (free, free)

(memset, memcpy)
BOF (set, memcpy)

· · ·
(free, read)

Use-After-Free (null, read)
· · ·

sensitive concurrent operations play an identical operation, i.e.,
A = B. When the two sensitive operations in a pair are identical,
e.g., (free, free), any execution order between the two sensitive
operations is equivalent. We note that the two sensitive operations
in a pair must be concurrent, i.e., executed in different threads, to
trigger the corresponding concurrency vulnerability.

In Table 2, the pair of sensitive concurrent operations for concur-
rency double-free is self-explained. The exemplary pairs of sensitive
concurrent operations for concurrency use-after-free are also intu-
itive: the shared memory is freed or set to null in one thread and
then accessed such as read, (free, read) or (null, read), in another
thread. For concurrency buffer-overflows, when shared memory
is passed to a memcpy-like function as either the source buffer or
the length to be copied, and is modified concurrently in another
thread, e.g. the length is changed from 10 to 20, or, as shown in Fig. 2
and discussed in Section 3.1, a NULL-ended string is overwritten
with the proper NULL ending being removed, a concurrency buffer-
overflow would likely occur. When the shared memory is passed
to a memcpy-like function as the destination buffer, a concurrency
buffer-overflow would likely occur if its memory address is con-
currently modified in another thread, e.g. the pointer is assigned
with another pointer. Each of the above buffer-overflow cases can
be described with a pair of sensitive concurrent operations, with
the first sensitive operation modifying shared memory followed
by the second sensitive operation to pass the shared memory to a
memcpy-like function, such as (memset, memcpy) and (set, mem-
cpy) shown in Table 2. Listing 1 shows an exemplary output of this
stage: a pair of sensitive concurrent operations (null, read) for a
potential concurrency use-after-free vulnerability.

Listing 1: Static analysis output
Type : Concurrency use− a f t e r − f r e e
Opera t i on S ta t emen t Lo c a t i on
read : p r i n t f ( "% s " , s t r ) ; example2 . c : 7 8
n u l l : s t r = NULL ; example1 . c : 1 0 1

4.5 Semantic Checking
In our static analysis, we have used both a data-flow graph and a
control-flow graph to find pairs of sensitive concurrent operations.
A data-flow graph focuses mainly on dependency relations among
different data, while a control-flow graph is about execution paths.
They do not explore semantics of the statements around the two

sensitive operations in a found pair to determine if the pair could
possibly lead to the suspected concurrency vulnerability or not.

For example, for the reported pair shown in Listing 1, if there
is a condition to check if string str is NULL or not before calling
function printf for the first sensitive operation of the pair, then
the suspected concurrency use-after-free vulnerability will never
occur. Sending this pair to fuzz testing is simply a waste of time.
For a found pair of sensitive operations of concurrency use-after-
free, if we can determine that the associated variable is properly
set when shared memory is freed for the left (i.e., first) sensitive
operation in the pair, and there is a proper check to see if the
shared memory is freed before being used for the right (i.e., second)
sensitive operation in the pair, then the pair of sensitive concurrent
operations cannot lead to the suspected concurrency use-after-free
and should be deleted. Similar semantic checking should also be
applied to reported pairs of other concurrency vulnerabilities. This
would significantly reduce the set of candidate pairs to be tested by
fuzz testing.

Semantic checking can be realized in several ways. We have
adopted a simple approach by checking preceding conditions re-
lated to shared memory for a sensitive operation to determine if
the condition that would trigger the suspected concurrency vul-
nerability would never be met. For example, if we determine that
printf in Listing 1 is called only when str is not NULL, then we can
conclude that the condition to trigger the suspected concurrency
use-after-free reported by the pair shown in Listing 1 would never
be met. This approach is similar to the path exploration of symbolic
execution but much simpler since we focus on determining if a
certain condition, i.e., the condition to trigger the suspected con-
currency vulnerability, will be met or not. If we cannot determine
easily, we can always resort to fuzz testing to further test it, with a
possible adverse impact on the workload of fuzz testing.

5 THREAD-AWARE FUZZING
Akey issue in applying fuzz testing to effectively detect concurrency
vulnerabilities is how to make a fuzzer explore as many thread
interleavings as possible [34]. The more thread interleavings a
fuzzer explores, the more likely a concurrency error or vulnerability
is triggered. However, existing fuzzers are designed to explore as
many code paths as possible and thus perform poorly in exploring
thread interleavings. To the best of our knowledge, there is no
existing fuzzer that can explore deep thread interleavings well.

In realizing the above limitation of existing fuzzers, we advocate
using a thread-scheduling fuzzing strategy to effectively explore
thread interleavings of concurrent programs. The core idea in this
strategy is to adjust execution orders of threads, either randomly or
in a targeted manner, to generate as many thread interleavings as
possible or specific thread interleavings, depending on the fuzzer’s
targeted applications. There are a few ways to adjust or influence
execution orders of threads, such as adjusting a thread’s priority,
forcing a thread sleep for a certain or random time, etc.

In this section, we describe a simple thread scheduling scheme
by adjusting threads’ priorities. For simplicity, we assume that fuzz
testing of a concurrent program is bound to one CPU core as a fuzzer
would normally do. This enables us to set the thread scheduling
of a concurrent program to strict First-In-First-Out (FIFO), which



ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Changming Liu, Deqing Zou, Peng Luo, Bin B. Zhu, and Hai Jin

makes manipulating thread scheduling much easier. This scheme
manifests in two forms, aiming at performing different tasks. They
are described in detail in the following two subsections.

5.1 Interleaving Exploring Priority
Our thread scheduling in this form, called interleaving exploring
priority, aims at exploring as many thread interleavings as possible
in fuzz-testing a concurrent program. This is achieved by inserting
assembly code after a new thread is forked, i.e. pthread_create is
called, to manipulate the priority of the thread that executes this
inserted code. The assembly code, if ever reached, will adjust the
priority of the thread the assembly code resides in to a certain level
such as the highest or the lowest level of priority. For each thread
interleaving, the concurrent program will be tested for a fixed num-
ber of times in different iterations of fuzz testing. When a thread
interleaving has completed testing, a new, untested interleaving
is generated and tested. This process is repeated until all thread
interleavings have been tested. If the fuzzer still runs by then, the
whole process is repeated to test different interleavings again un-
til the fuzz testing is stopped. In doing so, we hope to cover as
many thread interleavings as possible, and each thread interleaving
is sufficiently tested. Our experimental results indicate that this
approach is very effective in finding concurrency crashes.

5.2 Targeted Priority
As we have mentioned, execution orders are critical in general in
triggering concurrency vulnerabilities. The interleaving exploring
priority described above, although effective in exploring thread in-
terleavings, is ineffective in triggering concurrency vulnerabilities
since, as we mentioned in Section 2.2, triggering a concurrency
vulnerability normally requires meeting two requirements simul-
taneously: a specific input and a specific scheduling. By aiming at
exploring as many interleavings as possible, it is difficult for the
interleaving exploring priority to meet both requirements at the
same time to trigger a concurrency vulnerability. To improve the
chance to trigger concurrency vulnerabilities, we have developed
another thread scheduling scheme, called targeted priority, to aim at
exploring concurrency-vulnerability-dependent interleavings that
would likely trigger targeted concurrency vulnerabilities.

Since each concurrency vulnerability candidate consists of a pair
of sensitive concurrent operations, and a specific execution order
of the two concurrent operations is required to trigger the potential
concurrency vulnerability, we can instrument the priority-adjusting
assembly code at the two sensitive operations to adjust the priorities
of the two threads that run the two sensitive concurrent operations
respectively so that the two threads would likely be executed in
the specific order that would trigger the potential concurrency
vulnerability.

More specifically, suppose there is a pair, (A, B), of sensitive con-
current operations A and B, where operation A must be executed
before operation B to trigger the suspected concurrency vulnerabil-
ity1. The inserted priority-adjusting assembly code would do the
following:
1If sensitive operations A and B are identical, such as in a pair (free, free) for a con-
currency double-free vulnerability, the reverse execution order can also trigger the
suspected vulnerability. In this case, there is no need to force any specific execution
order.

• If the inserted priority-adjusting assembly code that sensitive
operation B resides in is executed first, the priority-adjusting
assembly code will set the thread that runs it and B to the
lowest priority. This thread’s original prioritywill be restored
only after sensitive operation A has been executed.

• If execution hits the inserted priority-adjusting assembly
code that sensitive operation A resides in first, nothing will
be scheduled.

The above process is illustrated in Algorithm 1 (see Section 5.3 for
definition of some terms used in the algorithm). In this way, fuzz
testing likely executes sensitive operations A and B in the desirable
order: A is executed before B, and thus likely trigger the potential
concurrency vulnerability.

ALGORITHM 1: Algorithm to schedule a pair of sensitive concurrent
operations in a scheduling unit
Input: A pair (A, B) of sensitive concurrent operations to schedule, where

A , B , the counter of this unit, Counter , which is initialized to 0,
and a threshold Θ for all counters.

if Counter ≥ θ then
return

end
if hit A then

execute A;
if B’s priority has been modified then

restore B’s original priority;
end
Counter++;

end
if hit B then

if A has not been executed then
set B’s priority to the lowest;

end
end

5.3 Load Balance
In a concurrent program, there are usually a set of pairs of sensitive
concurrent operations that need to be tested in fuzz testing. Each
pair is associated with the instruction code described in Section 5.2
to adjust the two relevant threads’ priorities tomake the two threads
executed in a desirable order in order to trigger the suspected
concurrency vulnerability. The instrumentation code for a pair is
referred to as a scheduling unit.

In fuzz testing, a program will be executed many times. It would
be beneficial if each pair of sensitive concurrent operations is tested
with equal probability, i.e., each scheduling unit is executed with
the same number of times. To achieve this goal, we use a counter in
each scheduling unit to count the number of times the scheduling
unit has been executed, as shown in Algorithm 1. Whenever a
scheduling unit is executed in fuzz testing, the counter is increased
by 1. If a counter exceeds a preset threshold, this corresponding
scheduling unit will not be scheduled, i.e. the two threads would
execute as if there were no scheduling unit. When counters of all
scheduling units have exceeded the threshold, we will boost the
threshold by a certain amount so that all scheduling units will be
scheduled again.



A Heuristic Framework to Detect Concurrency Vulnerabilities ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

6 IMPLEMENTATION
We have implemented the proposed heuristic framework to ex-
plore thread interleavings in fuzz testing and to detect concurrency
vulnerabilities for concurrent programs written in C with POSIX
multi-thread functions. The implementation details are described
in this section.

6.1 Implementation of Static Analysis
To implement the static analysis described in Section 4, we lever-
aged an existing concurrent static analysis tool in order to reduce
our implementation workload. Such a tool should be open source
so that we could modify its code to implement the desired function-
alities. It should also be able to work on concurrent C programs so
that we could apply it in our evaluation (see Section 7.1 for details).
Among available concurrent static analysis tools meeting our re-
quirements, LOCKSMITH [23] was selected since it was easy to use
and modify. It is a static analysis tool that uses a constraint-based
technique to automatically detect data races in concurrent C pro-
grams. We used it to discover shared variables for the functionality
described in Section 4.1, construct data-flow graphs and control-
flow graphs, and obtain information of locked areas. We modified
LOCKSMITH’s code to mark sensitive concurrent operations on the
data-flow graph to fulfill the functionality described in Section 4.2,
and mark preceding operations on the data-flow graph for each
one in a pair of sensitive operations and examine these operations
on both the data-flow graph and the control-flow graph to fulfill
the functionality described in Section 4.5.

To implement the functionaries described in Sections 4.3 and 4.4,
we wrote a program in Python using NetworkX module to process
results from LOCKSMITH for merging data-flows and categorizing
each pair of concurrent sensitive operations into a specific type of
vulnerability.

Listing 2: Instrumentation assembly flags in source code
/ / i n t h r e a d 1
T1 : 1 : asm ( " # c on_ a f l _ 4 8 \ n \ t " ) ;
T1 : 2 : s t r = NULL ;
T1 : 3 : asm ( " # c o n _ p r i o r i t y _ a f l _ 4 8 \ n \ t " ) ;
. . .
/ / i n t h r e a d 2
T2 : 1 : asm ( " # c on_ a f l _ 4 9 \ n \ t " ) ;
T2 : 2 : p r i n t f ( "%s " , s t r ) ;

6.2 Implementation of Thread-Aware Fuzzing
Our two thread fuzzing priorities were implemented based on AFL
[13]. We inserted instrumentation code to adjust thread priorities
to designated interleavings. This was done before and during AFL-
compiling the source code of a program, as described in detail next.
As a result, the source code is needed for our heuristic framework
to detect concurrency errors and vulnerabilities in a concurrent
program.

The instrumentation code was inserted in two steps: the first step
inserted assembly flags in the source code before AFL-compiling to
mark locations where our instrumentation code should be inserted,
while in the second step each assembly flag was replaced with

scheduling assembly code at AFL-compiling time. Same as the
original instrumentation of AFL, replacing assembly flags with
scheduling assembly code was done on assembly code files (i.e.,
.s files) generated during AFL compiling. Since we had access to
source code, for simplicity, we used -o0 optimization level to AFL-
compile all the tested programs.

For the interleaving exploring priority, the thread-priority adjust-
ing code was inserted right after a call of pthread_create function.
For the targeted priority, the thread-priority adjusting code was
inserted around each sensitive operation. Inserting thread-priority
adjusting code for the interleaving exploring priority is straightfor-
ward as compared with inserting thread-priority adjusting code for
the targeted priority. We shall focus on describing the latter in the
remaining part of this subsection.

Listing 2 shows an example of inserted assembly flags in a sched-
uling unit for the pair shown in Listing 1. In this listing, each
assembly flag is associated with a number, such as 48 and 49 in
Listing 2. These numbers indicate the execution order of the two
sensitive operations in a pair to trigger the suspected concurrency
vulnerability: the sensitive operation associated with a flag of a
smaller number in a pair should be executed before the sensitive
operation associated with a flag of a larger number in the same pair.
For example, in Listing 2, sensitive operation str = NULL should be
executed before sensitive operation printf("%s", str) to trigger the
suspected concurrency use-after-free since the former is associated
with 48 while the latter is associated with 49.

When the program was compiled by AFL, the assembly flags
in a pair were recognized and replaced with a scheduling unit of
scheduling assembly code. More specifically, assembly flags in the
generated .s files during AFL compiling were first located, and each
assembly flag right before a sensitive operation, e.g. the assembly
flag at line T1:1 and that at line T2:1 in Listing 2, was replaced
with scheduling assembly code to adjust the two threads’ priorities
according to Algorithm 1, with the sensitive operation associated
with a smaller number being executed first as we mentioned above.
Each sensitive operation that should be executed first in a pair
is followed with an assembly flag, such as line T1:3 in Listing 2.
This assembly flag was replaced with assembly code to restore the
original priority of the other thread in the pair if the thread was
adjusted to the lowest priority level, as described in Algorithm 1.

During fuzz testing, we allocated a scheduling trace table to
record the execution information of instrumentation code, which
tells what interleaving was actually executed in a test run, and how
many times an interleaving was executed. We also recorded some
global information such as a global threshold. If any crash was
triggered in fuzz testing, the recorded information could identify
the input and the interleaving associated with the crash, which
would help us validate detected concurrent vulnerabilities.

7 EVALUATION
We have applied the implemented heuristic framework to a bench-
mark suite of six real-world C programs. Experiments were per-
formed on Intel Xeon CPU E5-2630 v3 @ 2.40GHz with 32 logic
cores and 64 GB of memory, running on Red Hat 4.4.7-17. The
version of AFL [13] we used was AFL v2.51b.



ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Changming Liu, Deqing Zou, Peng Luo, Bin B. Zhu, and Hai Jin

Table 3: Experimental results (LOC = lines of code)

Application LOC Exploring Priority Vulnerability Detected Performance Overhead
# of new crashes Time Vuln. type # found by

static analysis
# detected by

targeted priority
boundedbuf 0.4k 0 2.3s Buffer Overflow 1 0 272%

swarm 2.2k 0 3.5s Double-Free 1 0 109%
bzip2smp 6.3k 2 1500s Double-Free 3 1 51%
pfscan 1.1k 1 1.2s None 0 0 98%
ctrace 1.5k 0 2.9s Double-Free 3 1 59%
qsort 0.7k 0 0.5s Buffer Overflow 2 0 104%

7.1 Benchmark Suite
Since there is no available benchmark suite for detecting concur-
rency vulnerabilities, to the best of our knowledge, we selected sev-
eral typical multi-thread C programs from previous works [8, 23, 33]
using the following selection criteria:

• Lines of code could not exceed tens of thousands. This is
because the static analysis tool we based on to implement
our own static analysis has adopted a very precise thus costly
method, which limits the tool to detect no more than tens
of thousands of lines of code [28]. This limitation excludes
many sophisticated but interesting software.

• Multi-thread programs written in C using POSIX multi-
thread functions.

• Do not interface with the network since AFL mutated a local
file that was fed into the program.

• Do not fork any new thread via a thread pool since a thread
pool would affect the accuracy of data-flow in the static
analysis, which would lead to too many false positives.

We collected six programs in the benchmark suite to evaluate our
heuristic framework. They were boundedbuff, a program that imple-
ments a multi-thread producer-consumer module; swarm, a parallel
programming framework for multi-core processors [1]; bzip2smp, a
parallel version of bzip2 compressing tool; pfscan, a multi-thread file
scanner; ctrace, a library for tracing the execution of multi-threaded
programs; and qsort, a multi-thread implementation of quick sort.

7.2 Experimental Results
Table 3 shows the detection results of our heuristic framework in
testing the benchmark suite described in Section 7.1. Our heuristic
framework contains actually two separated parts to perform two
different detection tasks. One is a modified AFL with the interleav-
ing exploring priority to enable AFL to explore thread interleavings
as effectively as possible to detect concurrency errors, while the
other consists of our static analysis and a modified AFL with the
targeted priority to detect targeted concurrency vulnerabilities such
as the three types of concurrency vulnerabilities studied in this
paper. The former will be referred to as the interleaving exploring
fuzzer while the latter as the vulnerability detection fuzzer. The
detection results for both fuzzers are included in Table 3. The detail
is described next.

In Table 3, the third column shows the number of new crashes
found with the interleaving exploring fuzzer, i.e., crashes found
with our modified AFL with the interleaving exploring priority

but not found by running the original AFL sufficiently long. The
remaining columns in the table except the last one show the de-
tection results of the vulnerability detection fuzzer: the execution
time in seconds of the static analysis in the fourth column; the type
and the number of suspected concurrency vulnerabilities reported
by the static analysis in the fifth and sixth columns, respectively;
and eventually in the seventh column the number of concurrency
vulnerabilities detected by the modified AFL with the targeted pri-
ority after sending each case reported by the static analysis to the
modified AFL for further testing. Thus the seventh column shows
the detection results of the vulnerability detection fuzzer. The last
column of able 3 shows the performance overhead of our modified
AFL against the original AFL for each tested program, which will
be described in detail later in this subsection.

Table 3 does not show any execution time taken by AFL fuzz test-
ing since the time spent in AFL fuzz testing was non-deterministic.
In most cases, it took about ten minutes or less for the interleaving
exploring fuzzer to produce the first crash. As a comparison, the
original AFL might not report any crash after running for several
days. For example, in testing bzip2smp, our interleaving exploring
fuzzer produced a crash after running in less than 10 minutes, while
the original AFL did not report any crash after running for 2 days.

As we described above, the crashes reported in the third column
of Table 3 were all new crashes found by the interleaving exploring
fuzzer. Since there was no report on crashes of the programs in the
benchmark suite by any existing fuzzer, we compared the detection
results of our interleaving exploring fuzzer with the results of the
original AFL. If a crash was reported by the interleaving exploring
fuzzer but not reported by the original AFL after running it suf-
ficiently long, the crash was considered new and reported in the
third column in Table 3.

We have also studied the impact of our thread scheduling on
the performance of AFL by comparing the total number of execu-
tions of a program to be tested in a fixed duration of time with our
modified AFL against that with the original AFL. The last column
in Table 3 shows the performance overhead of our modified AFL
against the original AFL for each tested program, which is defined
as the difference of the average execution time in running a tested
program with our modified AFL, including both using the interleav-
ing exploring priority and using the targeted priority, and with the
original AFL, normalized by the original AFL’s average execution
time. The performance overhead ranged from 51% to 272% for the
benchmark suite.



A Heuristic Framework to Detect Concurrency Vulnerabilities ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

7.3 Validation of Detected Concurrency
Vulnerabilities

For each concurrency vulnerability detected by the vulnerability
detection fuzzer, we need to verify if it is a true positive or a false
positive. We used the following manual validation process to verify
the two concurrency vulnerabilities reported in Table 3: a concur-
rency double-free for each of bzip2smp and ctrace.

When a crash was reported, our modified AFL recorded its input
and the thread interleaving setting in the crash file. With the crash
report, we manually inserted the scheduling code in the source to
set the thread interleaving the same as the crash interleaving and
inserted assertive code before the sensitive operations to assert the
condition that would trigger the detected concurrency vulnerability.
Then we repeatedly ran the tested program fed with the crash input
in order to hit the assertive code. If the assertive code was hit, we
concluded that the detected concurrency vulnerability was a true
positive. If the assertive code was not hit after running the tested
program many times, we concluded that the detected concurrency
vulnerability was highly likely a false positive.

Using thismanual validation process, the two concurrency double-
free vulnerabilities detected by the vulnerability detection fuzzer
and reported in Table 3 were confirmed to be true positives.

7.4 Analysis of Static Analysis Results
The goal of the static analysis is to locate potential concurrency
vulnerabilities and obtain their information to provide the modified
AFL with the targeted priority to test. False positives in the static
analysis would increase the workload of fuzz testing. The semantic
checking in the static analysis aims at avoiding wasting time on
testing obvious false positives in fuzz testing instead of at accurately
detecting concurrency vulnerabilities. As a result, we had used a
simple method in the semantic checking to eliminate cases that
could be easily determined to be false positives, i.e., the condition
that would trigger a suspected concurrency vulnerability could be
easily determined to never be met.

Nevertheless, a more accurate semantic checking would help
reduce the workload of fuzz testing. To analyze the performance of
the static analysis, we investigated the cases reported by the static
analysis but not detected by the modified AFL with the targeted
priority. There were 8 such cases in total, as we can see from Table 3.
By examining and debug-testing the code, we could determine
that 4 cases out of the total 8, the one in boundedbuf, the two in
qsort, and one in ctrace, were false positives, thanks partially to
the small code base of these programs. The other 4 cases in larger
programs could not be determined in our investigation: they looked
like true positives as reported by the static analysis in our manual
examination but we could not trigger them in our fuzz testing. As
a result, we were unable to determine if they were true positives
or not. As we shall describe in Section 8, AFL might have failed to
execute the sensitive operations in a pair or insufficiently tested
such a pair that had failed to trigger the concurrency vulnerability.
Both would lead to false negatives.

7.5 Abnormal Time Cost of Static Analysis
From Table 3, we can see an extreme time cost, 1500 seconds, of the
static analysis on bzip2smp, while the time cost for other programs

in the benchmark suite are all 3.5 seconds or less. This observation
led us to investigate the root cause of the outlier.

By examining the code of bzip2smp, we found a macro that was
repeatedly called many times in bzip2smp. Listing 3 shows the piece
of code. It contains a macro BZ_ITAH, which is called literally 50
times. This would cause the static analysis to generate at least 50
branches in both the data-flow and the control-flow graph, resulting
in a long execution time for the static analysis. When we replaced
the 50 calls of the macro with a for-loop, for (i=0; i<=49; i++), the
semantics and functionality of the piece of code remain intact, but
the complexity of the data-flow and the control-flow graph in the
static analysis is significantly reduced: the time cost reduced to 13
seconds from the original 1500 seconds.

Listing 3: Macro used in bzip2smp
#define BZ_ITAH ( nn )
mt f v_ i = mtfv [ gs +( nn ) ] ;
bsW( s , s _ l e n _ s e l _ s e l C t r [ mt f v_ i ] ,
s _ c o d e _ s e l _ s e l C t r [ mt f v_ i ] )
BZ_ITAH ( 0 ) ; BZ_ITAH ( 1 ) ; BZ_ITAH ( 2 ) ;
BZ_ITAH ( 3 ) ; BZ_ITAH ( 4 ) ;
. . .
BZ_ITAH ( 4 5 ) ; BZ_ITAH ( 4 6 ) ; BZ_ITAH ( 4 7 ) ;
BZ_ITAH ( 4 8 ) ; BZ_ITAH ( 4 9 ) ;

8 LIMITATIONS AND FUTUREWORK
As reported in Section 7.2, our interleaving exploring fuzzer found
three new crashes that the original AFL did not find, and typically
produced the first crash within 10 minutes of running while the
original AFL might not report any crash after running for several
days. This indicates that the original AFL is ineffective in exploring
thread interleavings in testing a concurrent program, and the same
fuzzer, when combined with our interleaving exploring priority, can
explore thread interleavings very effectively. This is because our
interleaving exploring priority aims at exploring as many thread
interleavings as possible. Our interleaving exploring priority em-
powers a fuzzer to effectively detect concurrency errors, a great
enhancement to existing fuzzers.

In addition, our vulnerability detection fuzzer could detect two
concurrency vulnerabilities, and both vulnerabilities were con-
firmed to be true positives, as reported in Section 7.2. This demon-
strates the power and effectiveness of our vulnerability detection
fuzzer in detecting targeted concurrency vulnerabilities.

Nevertheless, there are several limitations for the current im-
plementation of the heuristic framework, mainly due to the tools
we based on to implement the framework. These limitations are
discussed in the following subsections. We are actively working on
improving the heuristic framework to address some of these issues.

8.1 Scalability of Static Analysis
LOCKSMITH [23], the static analysis tool we based on to implement
our static analysis, is precise but complex, which prevents it from
working on programs exceeding tens of thousands of lines of code
[28]. This was the main reason to choose small utility programs
instead of more interesting ones in our evaluation experiments. It
is desirable to choose a more scalable open-source static analysis



ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Changming Liu, Deqing Zou, Peng Luo, Bin B. Zhu, and Hai Jin

tool to implement our static analysis so that larger and commonly
used concurrent programs can also be tested with the heuristic
framework.

In addition, the semantic checking can be improved to reduce
false positives to avoid wasting time on testing false positive in our
fuzz testing.

8.2 Capacity of AFL in Exploring Paths
We have adopted AFL to implement our interleaving exploring
fuzzer and our vulnerability detection fuzzer. It is well-known that
AFL explores sophisticated programs in a shallow manner, and this
problem has been addressed recently in [6, 14]. It is desirable to use
a more sophisticated fuzzer that can explore code paths deeply or
guide testing towards executing the sensitive operations reported
by the static analysis such as that presented in [2].

8.3 Restrictions of Manual Validation
The manual validation described in Section 7.3 to validate detected
concurrency vulnerabilities is a labor-intensive work. Based on
a crash report by our vulnerability detection fuzzer, we need to
manually insert scheduling code into the source to ensure that the
same interleaving that caused the crash in the fuzz testing would
be used in validation, then examine the program code to determine
the root cause of a reported concurrency vulnerability in order to
decide the condition to confirm the concurrency vulnerability. Next
we need to insert assertive code around the sensitive operations to
determine if the condition is really hit in validation, and then run
the program fed with the crash input repeatedly in order to hit the
assertive code.

We need to run the tested program repeatedly in the validation
process since the crash report is insufficient to replay the crash.
According to [22], it requires to record the information of eight
factors to deterministically replay a concurrency error, which is far
more than the information recorded by AFL.

Among all these limitations, the insertion of scheduling code into
the source during validation can be automated in a way similar to
ConMem-v in [36]. Writing such automatic tool is of lower priority
since the number of cases to be validated is small by now. Although
taking some time, running a program to be tested repeatedly in the
validation phase has a high chance to repeat the crash.

The most challenging task in our manual validation is actually
the comprehension of the code in order to identify the root cause
of a reported concurrency vulnerability so that we can determine a
condition to place into inserted assertive code such that triggering
the assertive condition confirms the reported concurrency vulnera-
bility. This assertive condition differs from the condition for a pair
of sensitive operations that the static analysis finds and the fuzz
testing uses to trigger a suspected concurrency vulnerability. The
latter is the execution order of the two sensitive operations in a
pair that would trigger the its potential concurrency vulnerability.
It is coarse, at the thread level. The former, on the other hand, is
fine-grained and requires understanding the root cause of the con-
currency vulnerability. It needs to guarantee confirmation of the
suspected concurrency vulnerability once triggered. Obtaining this
assertive condition in our validation typically requires thorough
understanding of the relevant code written by others, which is

labor-intensive and time-consuming, especially for concurrency
buffer overflows. Due to its complexity, there is a chance that the
derived assertive condition is incomplete, which may lead to failure
to confirm a true positive. As a result, a false positive determined by
our manual validation is probabilistic instead of deterministic. On
the other hand, a true positive determined by our manual validation
is always deterministic.

8.4 Additional Limitations
In addition to the above limitations, there are some additional lim-
itations in our implementation of the heuristic framework. The
heuristic framework currently works only with concurrent pro-
grams written in C using POSIX multi-thread functions requires
the source code to detect concurrency errors and vulnerabilities in
a concurrent program. It is desirable to extend the heuristic frame-
work to cover programs written in other languages and using other
multi-thread functions, and to cover binary programs without using
source code. The ideas presented in this paper work for the these
extensions, but it requires a great effort to realize them.

9 CONCLUSION
In this paper, we proposed a heuristic framework to detect concur-
rency errors and vulnerabilities in concurrent programs. It includes
two separate fuzzers. One fuzzer, the interleaving exploring fuzzer,
explores interleavings effectively to test as many interleavings as
possible. It can detect concurrency errors effectively and efficiently.
The other fuzzer, the vulnerability detection fuzzer, first applies
static analysis to locate sensitive concurrent operations, categorize
each finding to a potential concurrency vulnerability, and determine
the execution order of the sensitive operations in each finding that
would trigger the potential concurrency vulnerability; and then
directs fuzz testing to explore the specific execution order of each
finding in order to trigger the potential concurrency vulnerability.

We used three types of common concurrency vulnerabilities,
i.e., concurrency buffer overflow, double-free, and use-after-free to
evaluate the proposed heuristic framework with a benchmark suite
of six real-world programs. In our experimental evaluation, the
interleaving exploring fuzzer reported three new crashes that were
not reported by the existing fuzzer, AFL, that our fuzzer was based
on. The interleaving exploring fuzzer typically produced the first
crashwithin 10minutes of runningwhile the original AFLmight not
report any crash after running for several days. These experimental
results indicate that our interleaving exploring fuzzer can effectively
explore interleavings in detecting concurrency errors while the
original AFL cannot. Additionally, the vulnerability detection fuzzer
detected two concurrency vulnerabilities, and both vulnerabilities
were confirmed to be true positives. This demonstrates the power
and effectiveness of the vulnerability detection fuzzer in detecting
targeted concurrency vulnerabilities.

REFERENCES
[1] D. A. Bader, V. Kanade, and K. Madduri. 2007. SWARM: A Parallel Programming

Framework for Multicore Processors. 1–8 pages. https://doi.org/10.1109/IPDPS.
2007.370681

[2] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. 2017. Directed Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’17). ACM, New York,
NY, USA, 2329–2344. https://doi.org/10.1145/3133956.3134020

https://doi.org/10.1109/IPDPS.2007.370681
https://doi.org/10.1109/IPDPS.2007.370681
https://doi.org/10.1145/3133956.3134020


A Heuristic Framework to Detect Concurrency Vulnerabilities ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

[3] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Na-
garakatte. 2010. A Randomized Scheduler with Probabilistic Guarantees of
Finding Bugs. In Proceedings of the Fifteenth Edition of ASPLOS on Architectural
Support for Programming Languages and Operating Systems (ASPLOS XV). ACM,
New York, NY, USA, 167–178. https://doi.org/10.1145/1736020.1736040

[4] Jacob Burnim, Koushik Sen, and Christos Stergiou. 2011. Testing Concurrent
Programs on Relaxed Memory Models. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis (ISSTA ’11). ACM, New York, NY,
USA, 122–132. https://doi.org/10.1145/2001420.2001436

[5] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing:
Three Decades Later. Commun. ACM 56, 2 (Feb. 2013), 82–90. https://doi.org/10.
1145/2408776.2408795

[6] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search.
CoRR abs/1803.01307 (2018). arXiv:1803.01307 http://arxiv.org/abs/1803.01307

[7] Ankit Choudhary, Shan Lu, and Michael Pradel. 2017. Efficient Detection of
Thread Safety Violations via Coverage-guided Generation of Concurrent Tests. In
Proceedings of the 39th International Conference on Software Engineering (ICSE ’17).
IEEE Press, Piscataway, NJ, USA, 266–277. https://doi.org/10.1109/ICSE.2017.32

[8] Tayfun Elmas, Jacob Burnim, George Necula, and Koushik Sen. 2013. CONCUR-
RIT: a domain specific language for reproducing concurrency bugs. Acm Sigplan
Notices 48, 6 (2013), 153–164.

[9] Azadeh Farzan, P. Madhusudan, Niloofar Razavi, and Francesco Sorrentino. 2012.
Predicting null-pointer dereferences in concurrent programs. In Proceedings of
ACM Sigsoft International Symposium on the Foundations of Software Engineering.
1–11.

[10] Patrice Godefroid, Michael Y. Levin, and David Molnar. 2008. Automated White-
box Fuzz Testing. In Proceedings of the 16th Network and Distributed System
Security Symposium, Vol. 8. 151–166.

[11] Pallavi Joshi, Mayur Naik, Chang Seo Park, and Koushik Sen. 2009. CalFuzzer: An
Extensible Active Testing Framework for Concurrent Programs. In Proceedings
of Computer Aided Verification. Berlin, Heidelberg, 675–681.

[12] Marek Kroemeke. 2014. Apache 2.4.7 mod_status - Scoreboard Handling Race
Condition. https://www.exploit-db.com/exploits/34133/.

[13] Lcamtuf. 2018. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/.
[14] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,

and Alwen Tiu. 2017. Steelix: Program-state Based Binary Fuzzing. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE
2017). ACM, New York, NY, USA, 627–637. https://doi.org/10.1145/3106237.
3106295

[15] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study of
the Reliability of UNIX Utilities. Commun. ACM 32, 12 (1990), 32–44.

[16] NIST. 2018. National Vulnerability Database. https://nvd.nist.gov/.
[17] NVD. 2018. CVE-2010-5298 Detail. https://nvd.nist.gov/vuln/detail/

CVE-2010-5298.
[18] OpenBSD. 2014. OpenBSD 5.4 errata 8. https://ftp.openbsd.org/pub/OpenBSD/

patches/5.4/common/008_openssl.patch.
[19] Soyeon Park, Shan Lu, and Yuanyuan Zhou. 2009. CTrigger: Exposing Atomicity

Violation Bugs from Their Hiding Places. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS XIV). ACM, New York, NY, USA, 25–36. https://doi.org/10.
1145/1508244.1508249

[20] Sangmin Park, Richard Vuduc, and Mary Jean Harrold. 2015. UNICORN: a
unified approach for localizing non-deadlock concurrency bugs. Software Testing,
Verification and Reliability 25, 3 (2015), 167–190. https://doi.org/10.1002/stvr.1523
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1523

[21] Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold. 2010. Falcon: Fault
Localization in Concurrent Programs. In Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1 (ICSE ’10). ACM, New
York, NY, USA, 245–254. https://doi.org/10.1145/1806799.1806838

[22] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie.
2010. PinPlay: A Framework for Deterministic Replay and Reproducible Analysis
of Parallel Programs. In Proceedings of the 8th Annual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO ’10). ACM, New York,

NY, USA, 2–11. https://doi.org/10.1145/1772954.1772958
[23] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. 2006. LOCKSMITH:

Context-sensitive correlation analysis for race detection. Acm Sigplan Notices 41,
6 (2006), 320–331.

[24] Nishant Sinha and Chao Wang. 2010. Staged Concurrent Program Analysis. In
Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (FSE ’10). ACM, New York, NY, USA, 47–56.
https://doi.org/10.1145/1882291.1882301

[25] Sherri Sparks, Shawn Embleton, Ryan K Cunningham, and Cliff Changchun Zou.
2007. Automated Vulnerability Analysis: Leveraging Control Flow for Evolu-
tionary Input Crafting. In Twenty-Third Annual Computer Security Applications
Conference (ACSAC 2007). 477–486.

[26] Sebastian Steenbuck and Gordon Fraser. 2013. Generating unit tests for concur-
rent classes. In IEEE Sixth International Conference on Software Testing, Verification
and Validation (ICST). IEEE, 144–153.

[27] Valerio Terragni and Shing-Chi Cheung. 2016. Coverage-driven Test Code Gen-
eration for Concurrent Classes. In Proceedings of the 38th International Confer-
ence on Software Engineering (ICSE ’16). ACM, New York, NY, USA, 1121–1132.
https://doi.org/10.1145/2884781.2884876

[28] JanWen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: Static Race Detection
on Millions of Lines of Code. In Proceedings of the the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering (ESEC-FSE ’07). ACM, New York, NY,
USA, 205–214. https://doi.org/10.1145/1287624.1287654

[29] Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, and Steve Dodier-Lazaro. 2017. How
Double-fetch Situations Turn intoDouble-fetch Vulnerabilities: A Study of Double
Fetches in the Linux Kernel. In Proceedings of the 26th USENIX Conference on
Security Symposium (SEC’17). USENIX Association, Berkeley, CA, USA, 1–16.
http://dl.acm.org/citation.cfm?id=3241189.3241191

[30] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope: A Checksum-
Aware Directed Fuzzing Tool for Automatic Software Vulnerability Detection. In
Proceedings of the 2010 IEEE Symposium on Security and Privacy (SP ’10). IEEE
Computer Society, Washington, DC, USA, 497–512. https://doi.org/10.1109/SP.
2010.37

[31] Wikipedia. 2018. Dirty COW. https://en.wikipedia.org/wiki/Dirty_COW.
[32] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013.

Scheduling Black-box Mutational Fuzzing. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’13). ACM, New York,
NY, USA, 511–522. https://doi.org/10.1145/2508859.2516736

[33] Junfeng Yang, Ang Cui, Sal Stolfo, and Simha Sethumadhavan. 2012. Concurrency
Attacks. In Proceedings of the 4th USENIX Conference on Hot Topics in Parallelism
(HotPar’12). USENIX Association, Berkeley, CA, USA, 15–15. http://dl.acm.org/
citation.cfm?id=2342788.2342803

[34] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam. 2012. Maple:
A Coverage-driven Testing Tool for Multithreaded Programs. In Proceedings
of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA ’12). ACM, New York, NY, USA, 485–502.
https://doi.org/10.1145/2384616.2384651

[35] Wei Zhang, Junghee Lim, Ramya Olichandran, Joel Scherpelz, Guoliang Jin, Shan
Lu, and Thomas Reps. 2011. ConSeq: Detecting Concurrency Bugs Through
Sequential Errors. In Proceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
XVI). ACM, New York, NY, USA, 251–264. https://doi.org/10.1145/1950365.
1950395

[36] Wei Zhang, Chong Sun, and Shan Lu. 2010. ConMem: Detecting Severe Con-
currency Bugs Through an Effect-oriented Approach. In Proceedings of the
Fifteenth Edition of ASPLOS on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS XV). ACM, New York, NY, USA, 179–192.
https://doi.org/10.1145/1736020.1736041

[37] Shixiong Zhao, Rui Gu, Haoran Qiu, Tsz On Li, Yuexuan Wang, Heming Cui, and
Junfeng Yang. 2018. OWL: Understanding and Detecting Concurrency Attacks.
In Proceedings of IEEE/IFIP International Conference on Dependable Systems and
Networks. 219–230.

https://doi.org/10.1145/1736020.1736040
https://doi.org/10.1145/2001420.2001436
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
http://arxiv.org/abs/1803.01307
http://arxiv.org/abs/1803.01307
https://doi.org/10.1109/ICSE.2017.32
https://www.exploit-db.com/exploits/34133/
http://lcamtuf.coredump.cx/afl/
https://doi.org/10.1145/3106237.3106295
https://doi.org/10.1145/3106237.3106295
https://nvd.nist.gov/
https://nvd.nist.gov/vuln/detail/CVE-2010-5298
https://nvd.nist.gov/vuln/detail/CVE-2010-5298
https://ftp.openbsd.org/pub/OpenBSD/patches/5.4/common/008_openssl.patch
https://ftp.openbsd.org/pub/OpenBSD/patches/5.4/common/008_openssl.patch
https://doi.org/10.1145/1508244.1508249
https://doi.org/10.1145/1508244.1508249
https://doi.org/10.1002/stvr.1523
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1523
https://doi.org/10.1145/1806799.1806838
https://doi.org/10.1145/1772954.1772958
https://doi.org/10.1145/1882291.1882301
https://doi.org/10.1145/2884781.2884876
https://doi.org/10.1145/1287624.1287654
http://dl.acm.org/citation.cfm?id=3241189.3241191
https://doi.org/10.1109/SP.2010.37
https://doi.org/10.1109/SP.2010.37
https://en.wikipedia.org/wiki/Dirty_COW
https://doi.org/10.1145/2508859.2516736
http://dl.acm.org/citation.cfm?id=2342788.2342803
http://dl.acm.org/citation.cfm?id=2342788.2342803
https://doi.org/10.1145/2384616.2384651
https://doi.org/10.1145/1950365.1950395
https://doi.org/10.1145/1950365.1950395
https://doi.org/10.1145/1736020.1736041

	Abstract
	1 Introduction
	2 Related Work
	2.1 Static Analysis to Detect Concurrency Problems
	2.2 Concurrency Error Detection
	2.3 Logic-Based Methods
	2.4 Fuzz Testing

	3 Case Study of Concurrency Vulnerabilities
	3.1 Real-World Concurrency Vulnerabilities
	3.2 Characteristics of Concurrency Vulnerabilities

	4 Static Analysis
	4.1 Shared Memory Discovery
	4.2 Sensitive Operation Marking
	4.3 Data-flow Merging
	4.4 Vulnerability Categorization
	4.5 Semantic Checking

	5 Thread-Aware Fuzzing
	5.1 Interleaving Exploring Priority
	5.2 Targeted Priority
	5.3 Load Balance

	6 Implementation
	6.1 Implementation of Static Analysis
	6.2 Implementation of Thread-Aware Fuzzing

	7 Evaluation
	7.1 Benchmark Suite
	7.2 Experimental Results
	7.3 Validation of Detected Concurrency Vulnerabilities
	7.4 Analysis of Static Analysis Results
	7.5 Abnormal Time Cost of Static Analysis

	8 Limitations and Future Work
	8.1 Scalability of Static Analysis
	8.2 Capacity of AFL in Exploring Paths
	8.3 Restrictions of Manual Validation
	8.4 Additional Limitations

	9 Conclusion
	References

